
SQL Reference

This chapter gives an overview of the SQL operators, functions, and commands available under
MySQL 5.0. My goal in organizing the information in this chapter was to give you, dear reader, a
compact overview of the most important and useful syntactic variants.

This chapter is no substitute for the MySQL documentation, which provides not only the
MySQL source code, but also the best, most complete, and most up-to-date reference for MySQL.
No book could supersede this online reference. The great advantage of the MySQL documentation,
its huge amount of information, is also its greatest drawback: important commands and syntax
variants get lost amid the countless details, which for 90 percent of the cases are irrelevant. See
http://dev.mysql.com/doc/mysql/en/index.html.

Please note that MySQL boasts countless extensions as well as, alas, certain shortcomings with
respect to the ANSI-SQL/92 standard.

Syntax
We begin with a brief section describing the syntax of object names, character strings, dates and
times, and binary data.

Object Names
Names of objects—databases, tables, columns, etc.—can be at most 64 characters in length. Permit-
ted characters are all the alphanumeric characters of the character set used by MySQL as well as the
characters _ and $. For practical reasons, however, it makes sense to restrict oneself to the alphanu-
meric ASCII characters together with the underscore character. There are two reasons for this:

• The coding of special characters depends on the character set. If the client and server are not
in agreement on the character set, then access to objects might become problematic.

• The names of databases and tables can be stored in files, and it is not MySQL, but the oper-
ating system that is responsible for the naming rules for files. This can be yet another source
of conflict (especially if databases must be exchanged among various operating systems).

Names with special characters and reserved words: Object names are normally not permitted
to be the same as reserved SQL key words (select, from, etc.). Also, most special characters are not
permitted in a name (-!%, etc.). Both restrictions can be gotten around, however, by putting the
name in backward single quotes:

CREATE TABLE `special name` (`from` INT, `a!%` INT)

Compound names: Table names that do not refer to the current database must have the data-
base name prefixed to them. Likewise, the name of a column must be extended by the name of the

■ ■ ■

table and that of the database if the column name alone fails to provide a unique identification
(such as in queries in which several like-named columns in different tables appear):

Table names: tablename or db.tablename

Column names: colname or tblname.colname or dbname.tblname.colname

Case Sensitivity
The following objects are listed according to whether they exhibit case sensitivity:

Case Sensitivity: Database names (except under Windows), table names (except under Win-
dows), alias names, variable names through MySQL 4.1.

No Case Sensitivity: SQL commands and functions, column names, index names, variable
names since MySQL 5.0.

Under Windows, MySQL is flexible with respect to case in the naming of databases and tables.
The reason is that the operating system does not distinguish case in the naming of directories and
files. Note, however, that case must be consistent within an SQL command. The following com-
mand will not function properly: SELECT * FROM authors WHERE Authors.authName = “xxx”.

Since MySQL 4.0, MySQL under Windows uses exclusively lowercase names in the creation of
new databases and tables (regardless of how it is written in the CREATE command). This should
simplify the migration of databases from Windows to Unix/Linux. This automatic transformation
is the result of the option lower_case_table_names, which is set to 1 under Windows by default.

Character Strings
Character strings can be enclosed in single or double quotes. The following two expressions are
equivalent in MySQL, though only the single-quote variant conforms to the ANSI-SQL/92 standard.

'character string'
"character string"

If a quotation mark should happen to be part of the character string, then there are various ways of
expressing this:

"abc'abc" means abc'abc
"abc""abc" means abc"abc
"abc\'abc" means abc'abc
"abc\"abc" means abc"abc
'abc"abc' means abc"abc
'abc''abc' means abc'abc
'abc\"abc' means abc"abc
'abc\'abc' means abc'abc

Within a character string, the special characters provided by the prevailing character set are
allowed, for example, äöüß if you are working with the default character set ISO-8859-1 (latin1).
However, some special characters must be specially coded:

Quoting of Special Characters Within a String

\0 0 byte (Code 0).

\b Backspace character (Code 8).

\t Tab character (Code 9).

\n Newline character (Code 10).

\r Carriage return character (Code 13).

\" Double quote (Code 34).

\' Single quote (Code 39).

\\ Backslash (Code 92).

If x is not one of the above-mentioned special characters, then \x simply returns the character
x. Even if a character string is to be stored as a BLOB (binary object), then the 0 character as well as
the single quote, double quote, and backslash must be given in the form \0, \’, \”, and \\.

Instead of indicating special characters in character strings or BLOBs by the backslash escape
character, it is often easier simply to specify the entire object using hexadecimal notation. MySQL
accepts hex codes of arbitrary length in SQL commands in the following form:
0x4142434445464748494a.

However, MySQL is incapable of returning the result of a query in this form. (If you are working
with PHP, then that programming language offers a convenient function for this purpose: bin2hex.)

■Tip If two character strings are to be concatenated, then you must use the function CONCAT. (The operators +
and | | from other SQL dialects or programming languages will not serve the purpose.) In general, MySQL provides
a broad range of functions for working with character strings.

Character Set and Sort Order

• The character string and sort order (collation) will be set independently of each other.

• Each table, and indeed each column within a table, can have its own character set and its
own sort order.

• Unicode is now a possible choice for the character set (in formats UTF8 and UCS2 = UTF16).

In SQL commands one can specify the character set for every string. For this, you can use the
function CONVERT or the cast operator _characterset. Here are two equivalent examples, demon-
strating the internal Unicode encoding in the format UTF8:

SELECT HEX(CONVERT('ABCäöü' USING utf8))
414243C3A4C3B6C3BC

SELECT HEX(_utf8 'ABCäöü')
414243C3A4C3B6C3BC

In many cases, it can be necessary to specify the sort order as well as the character set. (This
determines which characters are considered equivalent and how character strings are to be sorted.)
For this, one has the syntax _characterset ‘abc’ COLLATE collname. Here is an example:

SELECT _latin1 'a' = _latin1 'ä'
0

SELECT _latin1 'a' COLLATE latin1_german1_ci =
_latin1 'ä' COLLATE latin1_german1_ci

1

Numbers
Decimal numbers are written with a period for the decimal point and without a thousands separa-
tor (thus 27345 or 2.71828). One may also use scientific notation (6.0225e23 or 6.626e-34) for very
large or very small numbers.

MySQL can also process hexadecimal numbers prefixed by 0x or in the form x’1234’. Depend-
ing on the context, the number is interpreted as a character string or as a 64-bit integer:

SELECT 0x4142434445464748494a, x'4142434445464748494a'
ABCDEFGHIJ ABCDEFGHIJ

SELECT 0x41 + 0
66

Automatic Transformation of Numbers and Character Strings
In carrying out an operation on two different data types, MySQL makes every attempt to find a
compatible data type. Integers are automatically changed into floating-point numbers if one of the
operators is a floating-point number. Character strings are automatically changed into numbers if
the operation involves a calculation. (If the beginning of the character string cannot be interpreted
as a number, then MySQL calculates with 0.)

SELECT '3.14abc' + 1
4.14

Date and Time
MySQL represents dates as character strings of the form 2005-12-31, and times in the form
23:59:59. With the data type DATETIME both formats are simply concatenated, yielding, for
example, 2005-12-31 23:59:59.

USE exceptions
SELECT * FROM test_date
id a_date a_time a_datetime a_timestamp

1 2005-12-07 09:06:29 2005-12-07 09:06:29 2005-12-07 09:06:29

■Caution Beginning with MySQL 4.1, the default setting of TIMESTAMPs has changed. They are returned from
the server in the format YYYY-MM-DD HH:MM:DD. Through MySQL 4.0, the usual form was YYYYMMDDHHMMDD.
Add a zero if you wish to use the old format (SELECT ts+0 FROM table).

Version 5.0 has introduced another important change. In DATE and DATETIME columns only valid dates are
now accepted. (Older versions of MySQL made only a cursory validity check, which recognized 2005-02-45 as
invalid, but not 2005-02-31.) The date ‘0000-00-00’ is a special case. This value is officially permitted in MySQL
as a date.

In storing dates, MySQL is quite flexible: Both numbers (e.g., 20051231) and character strings
are accepted. Hyphens are allowed in character strings, or they can simply be done without. If a
year is given but no century is specified, then MySQL automatically uses the range 1970—2069.
Therefore, MySQL accepts the following character strings for a DATETIME column: ‘2005 12 31’,
‘20051231’, ‘2005.12.31’, and ‘2005&12&31’.

Binary Data
Binary data that are to be stored in BLOB fields are dealt with in SQL commands like character
strings. (However, there are differences in sorting.)

Binary Numbers
Since version 5.0.3, MySQL supports the data type BIT. Binary numbers can be written in the form
b’110010’.

Comments
There are three ways of supplying comments in SQL commands:

SELECT 1 # comment
SELECT 1 /* comment */
SELECT 1 -- comment

Comments that begin with # or with — (there must be a space after the —) hold until the end of
the line. Comments between /* and */ can extend over several lines, as in C. Nesting is not allowed.

If you wish to write SQL code that makes use of some of the peculiarities of MySQL yet remains
compatible as much as possible with other dialects, a particular variant of the comment is often
useful:

SELECT /*! STRAIGHT_JOIN */ col FROM table ...

With the MySQL-specific SELECT extension, STRAIGHT_JOIN will be executed only by MySQL;
all other SQL dialects will consider this a comment.

A variant of this enables differentiation among various MySQL dialects:

CREATE /*!32302 TEMPORARY */ TABLE ...

In this case, the key word TEMPORARY is processed only if the command is executed by
MySQL 3.23.02 or a more recent version.

Semicolons at the End of SQL Commands
Neither ANSI-SQL nor the SQL dialect of MySQL allows semicolons at the end of an instruction.
This syntax rule holds as well for MySQL when a single command is to be executed. However, there
are cases in which semicolons are necessary:

• If you execute commands with the MySQL command interpreter (that is, the program
mysql), you must terminate commands with a semicolon.

• In defining stored procedures and triggers, commands must be separated by semicolons.

• Since MySQL 4.1 the client library has allowed for the execution of several commands at once,
and here as well the commands must be separated by semicolons. PHP also provides for the
mysqli method multi_query. With other APIs a MULTI_STATEMENT mode must be explicitly
activated, in C, for example, with mysql_real_connect(…, CLIENT_MULTI_STATEMENTS).

Operators
MySQL Operators

Arithmetic Operators

+ - * / Basic calculation.

% Modulo (remainder on integer division).

DIV Alternative division operator (from MySQL 4.1).

MOD Alternative modulo operator (from MySQL 4.1).

Bit Operators

| Binary OR.

& Binary AND.

~ Binary negation (inverts all bits).

<< Shifts all bits left (implies multiplication by 2n).

>> Shifts all bits right (implies division by 2n).

Comparison Operators

= Equality operator.

<=> Equality operator that permits a NULL comparison.

!= <> Inequality operator.

< > <= >= Comparison operators.

IS [NOT] NULL NULL comparison.

BETWEEN Range comparison (e.g., x BETWEEN 1 AND 3).

IN Set comparison (e.g., x IN (1, 2, 3) or x IN (‘a’, ‘b’, ‘c’)).

NOT IN Set comparison (e.g., x NOT IN (‘a’, ‘b’, ‘c’)).

Pattern Comparison

[NOT] LIKE Simple pattern comparison (e.g., x LIKE ‘m%’).

[NOT] REGEXP Extended pattern comparison (e.g., x REGEXP ‘.*x$’).

SOUNDS LIKE Corresponds to SOUNDEX(a) = SOUNDEX(b), since MySQL 4.1.

Binary Comparison

BINARY Marks the operands as binary (e.g., BINARY x = y).

Logical Operators

!, NOT Negation.

||, OR Logical OR.

&&, AND Logical AND.

XOR Logical exclusive OR (new since MySQL 4.0).

Casting Operators (Since MySQL 4.1)

_charset ‘abc’ The character set charset holds for ‘abc’.

_charset ‘abc’COLLATE col The character set charset and sort order col hold for ‘abc’.

Arithmetic Operators, Bit Operators
Arithmetic operators for which one of the operands is NULL generally return NULL as result. In
MySQL, a division by zero also returns the result NULL (in contrast to many other SQL dialects).

Comparison Operators
Comparison operators normally return 1 (corresponding to TRUE) or 0 (FALSE). Comparisons with
NULL return NULL. The two exceptions are the operators <=> and IS NULL, which even in compari-
son with NULL return 0 or 1:

SELECT NULL=NULL, NULL=0
NULL, NULL

SELECT NULL<=>NULL, NULL<=>0
1, 0

SELECT NULL IS NULL, NULL IS 0
1, 0

In the case of string comparisons with <, <=, >, and >= with BETWEEN (and of course with all
sort operators), the character set and sort order of the affected column come into play. For strings in
quotes, the character set and sort order must be given explicitly. Comparisons of strings in different
character sets is not permitted.

Pattern Matching with LIKE
MySQL offers two operators for pattern matching. The simpler, and ANSI-compatible, of these is
LIKE. As with normal character string comparison, there is no case distinction. In addition, there
are two wild cards:

LIKE Search Pattern

_ Placeholder for an arbitrary character.

% Placeholder for arbitrarily many (including 0) characters (but not for NULL).

_ The underscore character _.

\% The percent sign %.

Pattern Matching with REGEXP
Considerably wider scope in the formulation of a pattern is offered by REGEXP and the equivalent
command RLIKE. The relatively complicated syntax for the pattern corresponds to the Unix com-
mands grep and sed.

REGEXP Search Patterns

Definition of the Pattern

abc The string abc.

(abc) The string abc (formed into a group) .

[abc] One of the characters a, b, c.

[a-z] A character in the range a to z.

[^abc] None of these characters (but any other).

. Any character.

Continued

REGEXP Search Patterns (Continued)

Appearance of the Pattern

x The expression x must appear once.

x|y The expression x or y must appear once.

x? The expression x may appear once (or not at all) .

x* The expression x may appear arbitrarily often (or not at all).

x+ The expression x may appear arbitrarily often, but at least once.

x{n} The expression x must appear exactly n times.

x{,n} The expression x may appear at most n times.

x{n,} The expression x must appear at least n times.

x{n,m} The expression x must appear at least n and at most m times.

^ Placeholder for the beginning of the string.

$ Placeholder for the end of the string.

\x Special character x (e.g., \$ for $).

As with LIKE, there is no case distinction. Please note that REGEXP is successful when the
search pattern is found somewhere within the character string. The search pattern is thus not
required to describe the entire character string, but only a part of it. If you wish to encompass the
entire character string, then you must use ^ and $ in the search pattern.

■Tip The above table contains only the most important elements of REGEXP patterns. A complete description
can be obtained under Unix/Linux with man 7 regex. This can also be found on the Internet, for example, at
http://linux.ctyme.com/man/alpha7.htm.

Binary Character String Comparison
Character strings are normally compared without case being taken into consideration. Thus ‘a’ = ‘A’
returns 1 (true). If you wish to execute a binary comparison, then you must place BINARY in front of
one of the operands. BINARY is a cast operator; that is, it alters the data type of one of the operands
(in this case it changes a number or character string into a binary object). BINARY can be used both
for ordinary character string comparison and for pattern matching with LIKE and REGEXP:

SELECT 'a'='A', BINARY 'a' = 'A', 'a' = BINARY 'A'
1, 0, 0

Logical Operators
Logical operators likewise return 0 or 1, or NULL if one of the operands is NULL. This holds also for
NOT; that is, NOT NULL again returns NULL.

Variables and Constants
MySQL supports a variety of variable types:

Ordinary variables (user variables): Such variables are identified by a prefixed @ character.
They lose their definition at the end of the MySQL session.

System and server variables: Such variables contain states or attributes of the MySQL server.
These variables are identified by two prefixed @ characters (e.g., @@binlog_cache_size).

Many system variables exist in two versions: one specific to the current connection (e.g.,
@@session.wait_timeout) and one global for the MySQL server (e.g., @@global.wait_timeout,
with the default value for this variable).

Structured variables: These are a special case of system variables. MySQL uses such variables
at this time only for defining additional MyISAM index caches.

Local variables and parameters within stored procedures: These variables are declared within
stored procedures and are valid only there. They have no identifier, and so must have a name
that makes them uniquely distinguishable from table and column names.

Through MySQL 4.1, MySQL variable names were case sensitive. However, starting with MySQL
5.0, these names are case insensitive. Thus @name, @Name, and @NAME all denote the same variable.

Variable Assignment
The following examples show several syntax variants for assigning values to variables. Note that SET
uses the assignment operator =, while SELECT uses :=. The last variant, the assignment of several
columns of a record to several variables, has been possible only since MySQL 5.0, and there only if
the SELECT command returns exactly one record.

SET @varname = 3
SELECT @varname := 3
SELECT @varname := COUNT(*) FROM tabelle
SELECT COUNT(*) FROM tabelle INTO @varname
SELECT title, subtitle FROM titles WHERE titleID=... INTO @t, @st

Evaluating and Displaying Variables
Most variables can be evaluated with SELECT:

SELECT @varname
3

SELECT @@binlog_cache_size
@@binlog_cache_size

32768

In the case of system variables, you can use SHOW VARIABLES in addition to SELECT. This com-
mand has the advantage that it can display a list of variables all at once. The @@ identifier is absent.

SHOW VARIABLES LIKE 'b%'
Variable_name Value

back_log 50
basedir C:\Programs\MySQL\MySQL Server 5.0
binlog_cache_size 32768
bulk_insert_buffer_size 8388608

Remarkably, there exist system variables that can be evaluated only with SELECT (e.g.,
@@autocommit) or only with SHOW VARIABLES (e.g., system_time_zone).

Global System Variables versus
System Variables at the Connection Level
In its system variables, MySQL distinguishes between SESSION and GLOBAL variables. SESSION
variables are valid only for the current session (connection), while GLOBAL variables hold for the
entire server.

SELECT @@wait_timeout -- Session (connection level)
SELECT @@session.wait_timeout -- Session (connection level)
SELECT @@global.wait_timeout -- Global

System variables can also be changed. According to whether the change is only for the current
connection or should be valid globally, the following syntax variants are available. Note that with
SET, you may omit the two @ symbols. One cannot change system variables with SELECT.

SET @@wait_timeout = 10000 -- Session (connection level)
SET @@session.wait_timeout = 10000 -- Session (connection level)
SET SESSION wait_timeout = 10000 -- Session (connection level)
SET @@global.wait_timeout = 10000 -- Global
SET GLOBAL wait_timeout = 10000 -- Global

Variables at the global level can be changed by users possessing the Super privilege. When a
global variable is changed, the new value holds for all new connections, but not for those already
in existence.

Changes in SESSION variables, on the other hand, hold only until the end of the current con-
nection. When a new connection is made, the global default value again holds.

■Tip This book does not contain a complete description of all MySQL system variables. A complete list of
GLOBAL and SESSION variables can be found in the MySQL documentation. You may end up at the key word
LOCAL, which has the same meaning in this context as SESSION: http://dev.mysql.com/doc/mysql/en/
system-variables.html.

Enlightenment on the contents of the variables can be found in the MySQL documentation at the following
pages: http://dev.mysql.com/doc/mysql/en/server-parameters.html, http://dev.mysql.com/
doc/mysql/en/set-option.html, and http://dev.mysql.com/doc/mysql/en/show-variables.html.

SET PASSWORD
The command SET can also be used to change the connection passwords. However, PASSWORD
is not a variable!

SET PASSWORD = PASSWORD('xxx')
SET PASSWORD FOR user@hostname = PASSWORD('xxx')

SET has some special forms, which are described later in this chapter under the heading SET.

Structured Variables
With many system variables there is the possibility of creating more than one instance.
The MySQL documentation calls these structured variables. They are addressed in the form
instancename.variablenname. Indeed, an entire group of variables can be related to an instance. (In
the nomenclature of object-oriented programming, one speaks simply of objects and properties.)

At present there is only one group of structured variables in MySQL, which serves for control of
cache storage for MyISAM indexes: key_buffer_size, key_cache_block_size, key_cache_division_limit,

and key_cache_age_threshold. These four variables determine the size and management of RAM in
which indexes of MyISAM tables are temporarily stored.

After the start of the MySQL server there automatically exists an instance of this cache object,
which has the name default. Using SET @@default.key_buffer_size = … you can set the size of the
default cache. The shorthand SET @@key_buffer_size=… automatically refers to the instance default.

With the following command you can create an additional cache area:

SET @@mycache.key_buffer_size = n

Now mycache is a new instance of the cache. With SET @@mycache.key_cache_xxx you can set
additional properties of the cache. Then you can assign individual indexes to the new cache with
the command CACHE INDEX. To deactivate the cache, set its size to zero:

SET @@mycache.key_buffer_size = 0

■Tip The use of several index caches is useful only rarely for speed optimization. Further background information
is available at http://dev.mysql.com/doc/mysql/en/myisam-key-cache.html, http://dev.mysql.com/
doc/mysql/en/multiple-key-caches.html, and http://dev.mysql.com/doc/mysql/en/
structured-system-variables.html.

Constants
Starting with version 4.1, MySQL recognizes the constants TRUE (1) and FALSE (0).

MySQL Data Types
MySQL Data Types

Integers

TINYINT(m) 8-bit integer (1 byte); the optional value m gives the desired column width
in SELECT results (maximum display width), but has no influence on the
allowable range of numeric values.

SMALLINT(m) 16-bit integer (2 bytes).

MEDIUMINT(m) 24- bit integer (3 bytes).

INT(m), INTEGER(m) 32- bit integer (4 bytes).

BIGINT(m) 64- bit integer (8 bytes).

Floating-Point Numbers

FLOAT(m, d) Floating-point number, 8-place precision (4 bytes); the optional values m
and d specify the desired number of places before and after the decimal
point in SELECT results; the values have no influence over the way the
number is stored.

DOUBLE(m, d) Floating-point number, 16-place precision (8 bytes).

REAL(m, d) Synonym for DOUBLE.

DECIMAL(p, s) Fixed-point number, stored as string; arbitrary number of places (1 byte
per digit + 2 bytes overhead); p specifies the entire number of places, where
s is the number of places after the decimal point; default is DECIMAL(10,0).

NUMERIC, DEC Synonyms for DECIMAL.

Continued

MySQL Data Types (Continued)

Date, Time

DATE Date in the form ‘2005-12-31’, range 1000-01-01 to 9999-12-31 (3 bytes).

TIME Time in the form ‘23:59:59’, range +/-838:59:59 (3 bytes).

DATETIME Combination of DATE and TIME in the form ‘2005-12-31 23:59:59’
(8 bytes).

YEAR Year in the range 1900–2155 (1 byte).

TIMESTAMP(m) Date and time in the form 20051231235959 for times between 1970 und
2038 (4 bytes); the optional value m specifies the number of places in
SELECT results; m=8, for example, has the effect that only year, month,
and day are displayed.

Character Strings

CHAR(n) String with prescribed length, maximum 255 characters.

NATIONAL CHAR(n) Unicode string (corresponds to CHAR(n) CHARSET utf8 or NCHAR(n)).

VARCHAR(n) String with variable length; maximum 255 characters through MySQL 4.1,
and maximum 65,535 bytes since MySQL 5.0.3 for MyISAM tables, where
the maximum number of characters depends on the character set.

NATIONAL VARCHAR(n) Unicode string with variable length (corresponds to NCHAR
VARCHAR(n), VARCHAR(n) CHARSET utf8).

TINYTEXT String with variable length, maximum 255 characters.

TEXT String with variable length, maximum 216-1 characters.

MEDIUMTEXT String with variable length, maximum 224-1 characters.

LONGTEXT String with variable length, maximum 232-1 characters.

Binary Data

TINYBLOB Binary data with variable length, maximum 255 bytes.

BLOB Binary data with variable length, maximum 216-1 bytes.

MEDIUMBLOB Binary data with variable length, maximum 224-1 bytes.

LONGBLOB Binary data with variable length, maximum 232-1 bytes.

Geometric Data (Since MySQL 4.1)

GEOMETRY A general geometric object; further geometric types are listed later in
this chapter.

Miscellaneous

ENUM Enumeration of at most 65,535 strings (1 or 2 bytes).

SET Enumeration of at most 255 strings (1 to 8 bytes).

BIT Individual bits (since MySQL 5.0.3).

BOOL Synonym for TINYINT(1).

In the definition of columns (CREATE TABLE, ALTER TABLE), different options can be used for
different columns. The following table summarizes these options. Note that not all options are suit-
able for all data types.

Attributes (Options) of the MySQL Data Types

NULL Specifies that the column may contain the value
NULL; this setting holds by default.

NOT NULL Forbids the value NULL.

DEFAULT xxx Specifies the default value xxx to be used if no other
input value is specified. Even if you do not specify an
explicit default value, MySQL itself uses one in many
cases: NULL when it is permitted, otherwise 0 in
numeric columns, an empty string with VARCHAR, the
date 0000-00-00 with dates, the year 0000 with YEAR as
well as the first element of an ENUM enumeration.

DEFAULT CURRENT_TIMESTAMP Has the effect on TIMESTAMP columns that the cur-
rent time is automatically stored when new records
are inserted.

ON UPDATE CURRENT_TIMESTAMP Has the effect on TIMESTAMP columns that when
changes are made (UPDATE) the current time is auto-
matically stored.

PRIMARY KEY Defines the column as primary key.

AUTO_INCREMENT Results in an automatically increasing number being
inserted in the column; it can be used for only one col-
umn, with integer values; moreover, the options NOT
NULL and PRIMARY KEY must be specified (instead of
PRIMARY KEY, the column can be given a UNIQUE
index).

UNSIGNED Integers are stored without a sign; note that calcula-
tions are also made without signs.

ZEROFILL Integers in SELECT results are left-filled with zeros to
fill out their length (thus five-digit numbers such as
00123 and 01234).

BINARY With CHAR and VARCHAR columns, comparison and
sort operations are executed in binary. Hence upper-
case letters are sorted before lowercase ones. This is
more efficient, but less practical when results are to be
displayed in alphabetical order.

CHARACTER SET name, [COLLATE sort] With strings, gives the character set and optional sort
order.

COMMENT text Stores text as a comment on the column (since
MySQL 4.1).

SERIAL Since MySQL 4.1 is a synonym for BIGINT NOT NULL
AUTO_INCREMENT UNIQUE.

Command Overview (Thematic)
In the section following this one, SQL commands will be listed in alphabetical order. As a supple-
mentary aid to orientation, we provide here a systematic overview:

Database Queries, Data Manipulation

SELECT Queries existing record (data search).

INSERT Inserts new record.

REPLACE Replaces existing record.

UPDATE Changes existing record.

DELETE Deletes selected records.

TRUNCATE TABLE Deletes all records of a table.

LOAD DATA Inserts records from a text file.

HANDLER Reads records more efficiently than SELECT (since MySQL 4.0).

Transactions (Only with InnoDB Tables)

BEGIN or START TRANSACTION Begins a group of SQL commands.

COMMIT Confirms all executed commands.

ROLLBACK Aborts executed commands.

SAVEPOINT Places a marker within a running transaction.

Create Databases/Tables/Views, Change Database Schema

ALTER DATABASE Makes changes to the database (since MySQL 4.1).

ALTER TABLE Changes individual columns of a table, adds indexes, etc.

ALTER VIEW Changes a view (since MySQL 5.0).

CREATE DATABASE Creates a new database.

CREATE INDEX Creates a new index for a table.

CREATE TABLE Creates a new table.

CREATE VIEW Creates a view (since MySQL 5.0).

DROP DATABASE Deletes an entire database.

CREATE FUNCTION or PROCEDURE Deletes a stored procedure (since MySQL 5.0).

DROP INDEX Deletes an index.

DROP TABLE Deletes an entire table.

DROP VIEW Deletes a view (since MySQL 5.0).

RENAME TABLE Renames a table.

Administration of Tables (General)

ANALYZE TABLE Returns information on internal index management.

CHECK TABLE Tests table file for consistency errors.

FLUSH TABLES Closes all table files and then opens them.

LOCK TABLE Blocks tables for (write) access by other users.

OPTIMIZE TABLE Optimizes memory use in tables.

UNLOCK TABLES Releases tables locked with LOCK.

Administration of MyISAM Tables

BACKUP TABLE Copies table files into a backup directory.

CACHE INDEX Assigns individual caches to table indexes.

LOAD INDEX INTO CACHE Loads table indexes into the cache.

REPAIR TABLE Attempts to repair defective table files.

RESTORE TABLE Restores tables backed up with BACKUP.

Administration and Execution of Stored Procedures and Triggers (Since MySQL 5.0)

ALTER FUNCTION | PROCEDURE Changes a stored procedure.

CALL Calls a stored procedure.

CREATE FUNCTION | PROCEDURE | TRIGGER Creates a stored procedure or trigger.

DROP FUNCTION | PROCEDURE | TRIGGER Deletes a stored procedure or trigger.

SHOW CREATE FUNCTION | PROCEDURE Displays the code of a stored procedure.

SHOW FUNCTION | PROCEDURE STATUS Returns a list of all defined stored procedures.

Information on the Database Schema, Other Administrative Information

DESCRIBE Same as SHOW COLUMNS.

EXPLAIN Explains how a SELECT is executed internally.

SHOW Displays information about databases, tables, views, fields, stored procedures, etc.

Administration, Access Privileges, etc.

FLUSH Empties MySQL temporary storage and reads it in again.

GRANT Grants additional privileges.

KILL Ends a process.

REVOKE Restricts access privileges.

RESET Deletes the query cache or logging files.

SET Changes the content of MySQL system variables.

SHOW Displays the MySQL status, system variables, processes, etc.

USE Changes the active database.

Replication (Master)

PURGE MASTER LOGS Deletes old logging files.

RESET MASTER Deletes all logging files.

SET SQL_LOG_BIN=0/1 Deactivates/activates binary logging.

SHOW BINLOG EVENTS Returns a list of all entries in the active logging file (since MySQL 4.0).

SHOW MASTER LOGS Returns a list of all logging files.

SHOW MASTER STATUS Specifies the currently active logging file.

SHOW SLAVE HOSTS Returns a list of all registered slaves (since MySQL 4.0).

Replication (Slave)

CHANGE MASTER TO Changes replication settings in master.info.

LOAD DATA FROM Copies all tables from master to slave (since MySQL 4.0).

LOAD TABLE FROM Copies a table from master to slave.

RESET SLAVE Reinitializes master.info.

SHOW SLAVE STATUS Displays content of master.info.

SLAVE START/STOP Starts and stops replication.

Command Reference (Alphabetical)
In the following reference section, the following syntax is in force:

[option]: Optional parts of a command are shown in square brackets.

variant1 | variant2 | variant3 : Alternatives are separated by the | character.

ALTER DATABASE [dbname] actions

Since MySQL 4.1, with ALTER DATABASE you can change global database attributes. The settings
are stored in the file dbname/db.opt. Instead of ALTER DATABASE you can use the equivalent com-
mand ALTER SCHEMA. If dbname is missing, the command applies to the current database.

actions: Currently, two actions commands have been implemented.

[DEFAULT] CHARACTER SET charset specifies which character set the database should use by
default. (In the definition of tables and columns a different character set can be specified.)

[DEFAULT] COLLATE collname specifies the default sort order.

ALTER FUNCTION/PROCEDURE name options

ALTER FUNCTION/PROCEDURE since MySQL 5.0 changes details of a stored procedure (SP). How-
ever, the command is incapable of changing the code of an SP; for that, you need to delete the SP
(DROP FUNCTION/PROCEDURE) and then re-create it (CREATE FUNCTION/PROCEDURE).

options: NAME newname renames the stored procedure.

SQL SECURITY DEFINER/INVOKER changes the security mode of the SP (see CREATE FUNCTION).

COMMENT ‘newcomment’ changes the comment stored with the SP.

ALTER TABLE tblname tbloptions

ALTER TABLE can be used to change various details of the structure of a table. In the following, we
present an overview of the syntactic variants.

In the syntactically simplest form that we shall show here, ALTER TABLE changes the table
options. The possible options are described in CREATE TABLE. The command can be used, for
example, to change the type of a table (e.g., from MyISAM to InnoDB).

Note that with many ALTER TABLE variants, the table must be re-created. To do this, MySQL
creates a new table X with the new table properties, and then copies all the records into this new
table. Then the existing table is renamed Y, and table X is renamed tblname. Finally, Y is deleted.
On large tables, this can take considerable time and temporarily use a great deal of hard-disk space.

ALTER TABLE tblname ADD newcolname coltype coloptions [FIRST | AFTER existingcolumn]

This command adds a new column to a table. The definition of the new column takes place as with
CREATE TABLE. If the position of the new column is not specified with FIRST or AFTER, then the
new column will be the last column of the table.

The following example adds a new column ts with data type TIMESTAMP to the authors table:

ALTER TABLE authors ADD ts TIMESTAMP

ALTER TABLE tblname ADD INDEX [indexname] (indexcols ...)
ALTER TABLE tblname ADD FULLTEXT [indexname] (indexcols ...)
ALTER [IGNORE] TABLE tblname ADD UNIQUE [indexname] (indexcols ...)
ALTER [IGNORE] TABLE tblname ADD PRIMARY KEY (indexcols ...)
ALTER TABLE tblname ADD SPATIAL INDEX (indexcol)

These commands create a new index for a table. If no indexname is specified, then MySQL simply
uses the name of the indexed column.

The optional key word IGNORE comes into play if several identical fields are discovered in the
creation of a UNIQUE or primary index. Without IGNORE, the command will be terminated with an
error, and the index will not be generated. With IGNORE, such duplicate records are simply deleted.

A spatial index for geometric data can be created starting with MySQL 4.1. The column indexcol
must have data type GEOMETRY and the attribute NOT NULL.

ALTER TABLE tblname ADD [CONSTRAINT [fr_keyname]]
FOREIGN KEY [c1_keyname]
(column1) REFERENCES table2 (column2)
[ON DELETE {CASCADE | SET NULL | NO ACTION | RESTRICT}]
[ON UPDATE {CASCADE | SET NULL | NO ACTION | RESTRICT}]

This command defines a foreign key constraint. This means that the foreign key tblname.column1
refers to table2.column2, and the table driver should ensure that no references point to nowhere.

This command results in two new indexes being created: the foreign key index for linking col-
umn1 and column2, and, if it doesn’t exist already, an ordinary index for tablename.column1.

Optionally, you can give these indexes names (ci_keyname and fr_keyname). If you are using a
replication system, you should definitely do this; otherwise, it could happen that MySQL uses dif-
ferent names for the original and replicating databases. That can lead later to problems if you wish
to delete the foreign key rules.

The optional ON DELETE and ON UPDATE clauses specify how the table driver is to react to
damage to integrity on DELETE and UPDATE commands (see Chapter 8 for details). By default, the
condition is STRICT, meaning that potential damage to integrity results in the command not being
issued and an error message being triggered.

Currently (MySQL 5.0.n), foreign key constraints can be applied only to InnoDB tables.
column2 must be given an index and must be of the same data type as column1.

ALTER TABLE tblname ALTER colname SET DEFAULT value
ALTER TABLE tblname ALTER colname DROP DEFAULT

This command changes the default value for a column or table or deletes an existing default value.

ALTER TABLE tblname CHANGE oldcolname newcolname coltype coloptions

This command changes the default value for a column in a table or deletes an existing default value.
The description of the column proceeds as with CREATE TABLE, which you may refer to. If the col-
umn name is to remain unchanged, then it must be given twice (that is, oldcolname and newcolname
are identical). Even if ALTER TABLE is used only to change the name of a column, both coltype and
coloptions must be completely specified.

ALTER TABLE tblname CONVERT TO
CHARACTER SET charset [COLLATE collname]

This command changes the character set and the optional sort order of all text columns of a table.
This change affects not only the formal definition of the table, but its content as well: all text fields
of the records are converted.

If you want to change only the definition of the table, and not its content, then you must change
the affected column to a BLOB and then back into the desired text data type with the associated charac-
ter set and sort order. This results in no change to the data, since MySQL leaves BLOB data untouched:

ALTER TABLE tblname CHANGE colname colname BLOB
ALTER TABLE tblname CHANGE colname colname VARCHAR(100) CHARACTER SET ...

If the text column is equipped with an index, you must first delete the index before the first
ALTER TABLE command and then re-create it after the second ALTER TABLE command.

ALTER TABLE tblname DISABLE KEYS
ALTER TABLE tblname ENABLE KEYS

Since MySQL 4.0, ALTER TABLE … DISABLE KEYS has the effect that all nonunique indexes are no
longer automatically updated with INSERT, UPDATE, and DELETE commands. ALTER TABLE …
ENABLE KEYS restores activation and updating of indexes.

The two commands should be used for carrying out extensive revisions to tables in the most
efficient manner possible. (The reconstruction of indexes with ENABLE KEYS costs considerably
less time than the constant updating with each altered record.)

ALTER TABLE dbname.tblname DISCARD TABLESPACE
ALTER TABLE dbname.tblname IMPORT TABLESPACE

These two commands are suitable only for InnoDB tables whose data are located in their own files
(MySQL server option innodb_file_per_table). In MySQL 5.0 it is not permitted to copy such files
from one database directory into another or from one MySQL installation to another. The two
ALTER TABLE variants enable, under certain circumstances, a tablespace file to be deactivated and
later reactivated.

ALTER TABLE dbname.tblname DISCARD TABLESPACE deletes the table tblname and the under-
lying file dbname/tblname.ibd. The file tblname.frm is preserved. ALTER TABLE dbname.tblname

IMPORT TABLESPACE reactivates the file dbname/tblname.ibd. The file must be the result of a backup
of the running MySQL installation that was carried out before the DISCARD TABLESPACE command.

Further details on these commands, for which there is hardly any useful practical application,
can be found at http://dev.mysql.com/doc/mysql/en/multiple-tablespaces.html.

ALTER TABLE tblname DROP colname
ALTER TABLE tblname DROP INDEX indexname
ALTER TABLE tblname DROP PRIMARY KEY
ALTER TABLE tblname DROP FOREIGN KEY foreign_key_name

The first three commands delete a column, an index, or the primary index. The fourth command,
since MySQL 4.0.13, deletes the specified foreign key constraint. You can determine with SHOW
CREATE TABLE the foreign_key_name of the index to be deleted.

If you are using replication, you should avoid deleting FOREIGN KEY rules. The reason is that
MySQL creates a special index when a FOREIGN KEY rule is defined. If you do not name this index
explicitly, it can happen that different names are used for the original and replicated database.

ALTER TABLE tblname ENGINE tabletype

This command changes the type of the table (the table driver). Allowed table types include InnoDB
and MyISAM. Note that a type change is possible only if the new table driver supports all the prop-
erties of the table. For example, the InnoDB table driver supports at present no full-text indexes. If
you wish to transform a MyISAM table into an InnoDB table, you must first delete the full-text index
(ALTER TABLE tblname DROP indexname).

ALTER TABLE tblname MODIFY colname coltype coloptions

This command functions like ALTER TABLE … CHANGE (see above). The only difference is that the
column cannot be changed, and thus the name needs to be given only once.

ALTER TABLE tblname ORDER BY colname

This command re-creates the table and orders the data records by colname. If you frequently read
records from the table ordered colname, this can increase efficiency a bit. The command has no
influence over new or changed records, and is therefore useful only if few future changes to the
table are expected.

ALTER TABLE tblname RENAME AS newtblname

This command renames the table (see also RENAME TABLE).

ALTER TABLE tblname TYPE tabletype

This command corresponds to ALTER TABLE tblname ENGINE tabletype.

ALTER [algoption] VIEW viewname [(columns)] AS command [chkoption]

ALTER VIEW changes the properties of a view. It has the same syntax as CREATE VIEW. ALTER VIEW
offers no way to change the name of a view.

ANALYZE TABLE tablename1, tablename2, …

ANALYZE TABLE performs an analysis of the indexed values of a column. The results are stored, and
in the future, this speeds up index access to data records a bit.

With MyISAM tables, the external program myisamchk -a tblfile can be used.

BACKUP TABLE tblname TO '/backup/directory'

BACKUP TABLE copies the files for the specified MyISAM table into a backup directory. The table
can be re-created with RESTORE TABLE.

Under Unix/Linux, the backup directory for the account under which MySQL is executed must
be writable.

BACKUP and RESTORE do not work for InnoDB tables. Both commands are considered depre-
cated and are best not used. Alternatives are external backup tools such as mysqldump, mysqlhotcopy
or the InnoDB backup utility.

BEGIN

If you are working with transaction-capable tables, then BEGIN introduces a new transaction. The
following SQL commands can then be confirmed with COMMIT or revoked with ROLLBACK. (All
changes to tables are executed only via COMMIT.) Further information and examples on the topic
of transactions can be found in Chapter 10.

Since MySQL 4.0.11, you can use the ANSI-conforming command START TRANSACTION
instead of BEGIN.

CACHE INDEX indexspec1, indexspec2 … IN cachename

Since MySQL 4.1, CACHE INDEX determines in which cache area a MyISAM index is placed. The
command can be used effectively only if first an additional cache area is created (see also the infor-
mation on structured variables in this chapter).

indexspec: Specifies which MyISAM indexes are to have their caches changed. The following
syntax is used for the index specification:

tablename [[INDEX|KEY] (indexname1, indexname2 …)]

If no index name is given, the command holds for all indexes in tablename.

cachename: denotes the cache instance in which the indexes are to be placed. Such an area
must first be set up with SET @@cachename.key_buffer_size=n (n is the reserved area size in
bytes).

CALL spname [parameter1, parameter2 …]

This command calls a stored procedure. CALL is designed only for user-defined procedures, not for
user-defined functions, which must be called with ordinary SQL commands (e.g., with SELECT).

CHANGE MASTER TO variable1=value1, variable2=value2, …

With this command, the replication settings for slave are carried out. The settings are stored in the
file master.info. The command can be used only for slave computers in a replication system, and
it requires the Super privilege. It recognizes the following variable names:

MASTER_HOST specifies the hostname or IP number of the master computer.

MASTER_USER specifies the user name used for communication with the master computer.

MASTER_PASSWORD specifies the associated password.

MASTER_PORT specifies the port number of the master computer (normally 3306).

MASTER_LOG_FILE specifies the current logging file on the master computer.

MASTER_LOG_POS specifies the current read position within the logging file on the master
computer.

CHECK TABLE tablename1, tablename2 … [TYPE=QUICK]

CHECK TABLE tests the internal integrity of the database file for the specified table. Any errors that
are discovered are not corrected. With MyISAM tables, instead of this command, the external pro-
gram myisamchk -m tblfile can be used.

COMMIT

COMMIT ends a transaction and stores all changes in the database. (Instead of executing COMMIT,
you can cancel the pending changes with ROLLBACK.) BEGIN/COMMIT/ROLLBACK function only
if you are working with transaction-capable tables. Further information and examples on trans-
actions can be found in Chapter 10.

CREATE DATABASE [IF NOT EXISTS] dbname [options]

CREATE DATABASE generates the specified database. (More precisely, an empty directory is created
in which tables belonging to the new database can be stored.) Note that database names are case
sensitive. This command can be executed only if the user has sufficient access privileges to create
new databases. Instead of CREATE DATABASE the equivalent command CREATE SCHEMA can be
used.

options: Since MySQL 4.1, you can specify the default character set for a table:

[DEFAULT] CHARACTER SET charset [COLLATE collname].

The optional key word DEFAULT has no function (that is, it does not matter whether you specify
it or not). With COLLATE you can select the sort order if there is more than one for the character
set in question. If you do not specify the CHARACTER SET, then the default character set of the
server is used.

CREATE FUNCTION name ([parameters]) RETURNS datatype [options] code

Since MySQL 5.0, CREATE FUNCTION creates a user-defined function (stored procedure) in the
current database. Defining stored procedures requires the Super privilege and executing them
requires the Execute privilege.

name: Specifies the function name. It is allowed for a function and a procedure within a single
database to have the same name (see CREATE PROCEDURE).

parameters : Several parameters may be specified, separated by commas. Each parameter must
be followed by its data type, e.g., para1 INT, para2 BIGINT.

datatype : Gives the data type of the function’s return value. All MySQL data types are allowed,
e.g., INT, DOUBLE, VARCHAR(n).

options: The following options can be used in function definition:

LANGUAGE SQL: Specifies the language of the stored procedure code. The only permissible
LANGUAGE setting is currently SQL. This setting holds by default. Future versions of MySQL
will offer the option of defining SPs in other programming languages (e.g., PHP).

[NOT] DETERMINISTIC : An SP is considered deterministic if it always returns the same results
with the same parameters. (SPs whose result depends on the content of the database are not
deterministic.) By default, SPs are nondeterministic. Deterministic SPs can be executed partic-
ularly efficiently. (For example, it is possible to store the result for particular parameters in a
cache.) Currently, however, the DETERMINISTIC option is ignored by the MySQL optimization
functions.

SQL SECURITY DEFINER/INVOKER : The SECURITY mode specifies the access privileges under
which the SP should be executed. SPs that are defined with SQL SECURITY DEFINER have the
same privileges as the MySQL user who defined the SP. This is the default security mode. SPs
defined with the option SQL SECURITY INVOKER have the access privileges of the MySQL user
who executed the SP.

COMMENT ‘text’: The comment text is stored together with the SP.

code: The actual SP code is usually given in the form of an SQL command. If the SP consists of
more than one command, they must be placed between BEGIN and END and separated by
semicolons (details are in Chapter 13).

Here is an example:

CREATE FUNCTION half(a INT) RETURNS INT
BEGIN
RETURN a/2;

END

CREATE FUNCTION name RETURNS datatype SONAME libraryname

CREATE FUNCTION makes possible not only the definition of SPs, but also the binding of a func-
tion to an external library into MySQL. Such functions are called user-defined functions, or UDFs for
short. Programming such functions in C or C++ requires a degree of background knowledge about
how functions work in MySQL (and, of course, the requisite tools, like compilers). Further informa-
tion can be found at http://dev.mysql.com/doc/mysql/en/extending-mysql.html and http://
mysql-udf.sourceforge.net/.

CREATE [UNIQUE|FULLTEXT] INDEX indexname ON tablename (indexcols …)

CREATE INDEX enlarges an existing database to include an index. As indexname, the name of the
column is generally used. CREATE INDEX is not a freestanding command, but merely an alternative
form of ALTER TABLE ADD INDEX/UNIQUE, which you should see for details.

CREATE PROCEDURE name ([parameters]) [options] code

CREATE PROCEDURE creates, since MySQL 5.0, a user-defined procedure (stored procedure) in the
current database. The definition of stored procedures requires the Super privilege, while execution
requires the Execute privilege.

The syntax of this command is very similar to that of CREATE FUNCTION. However, unlike a
function, a procedure cannot return a result directly. However, a SELECT command can be executed
and parameters changed. For this reason, the syntax for the parameter list is a bit different from that
of CREATE FUNCTION.

parameters: More than one parameter can be defined, and they are separated by commas. Each
parameter is defined as follows:

[IN or OUT or INOUT] parametername datatype

The key words IN, OUT, and INOUT specify whether the parameter is only for input, only for
output, or for data transport in both directions (default is IN). All MySQL data types are
allowed, such as INT, VARCHAR(n), DOUBLE.

Here is an example:

CREATE PROCEDURE half(IN a INT, OUT b INT)
BEGIN
SET b=a/2;

END

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tblname
(colname1 coltype coloptions reference,
colname2 coltype coloptions reference...

[, index1, index2 ...]
)
[tbloptions]

CREATE TABLE generates a new table in the current database. If a database other than the current
one is to be used, the table name can be specified in the form dbname.tblname. If the table already
exists, an error message results. There is no error message if IF NOT EXISTS is used, but in this case,
the existing table is not affected, and no new table is created.

With the key word TEMPORARY a temporary table is created. If a temporary table is created
and a like-named, but not temporary, table already exists, the temporary table is created without an
error message. The old table is preserved, but it is masked by the temporary table. If you want your
temporary table to exist only in RAM (for increased speed), you must also specify ENGINE = HEAP.

The creation of regular tables requires the Create privilege. Since version 4.0, the creation of
temporary tables requires the Create Temporary Table privilege.

colname: Name of the column.

coltype : Data type of the column. A list of all MySQL data types (INT, TEXT, etc.) appears earlier
in this chapter.

coloptions: Here certain attributes (options) can be specified:

NOT NULL | NULL

UNSIGNED

ZEROFILL

BINARY

DEFAULT defaultval | DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP

AUTO_INCREMENT | IDENTITY

PRIMARY KEY

CHARACTER SET charset [COLLATE collname]

COMMENT text

reference : MySQL provides various key words for the declaration of foreign keys in keeping track
of referential integrity, e.g., REFERENCES tblname (idcolumn). These key words are currently
ignored, however (and with no error message). Even if you use InnoDB tables, the foreign key
constraints for such tables must be specified within the confines of the index definition.

index: KEY or INDEX defines a usual index spanning one or more columns. UNIQUE defines a
unique index (that is, in the column or columns, no identical values or groups of values can be
stored). With both variants an arbitrary index name may be given for the internal management
of the index. PRIMARY KEY likewise defines a UNIQUE index. Here, however, the index name is
predefined: It is, not surprisingly, PRIMARY. With FULLTEXT, an index is declared for full-text
search (in MySQL 4.0, only with MyISAM tables). Since MySQL 4.1, an index for GEOMETRY
data can be created with SPATIAL INDEX; indexcol must be defined with the attribute NOT NULL.

KEY | INDEX [indexname] (indexcols ...)

UNIQUE [INDEX] [indexname] (indexcols ...)

PRIMARY KEY (indexcols ...)

FULLTEXT [indexname] (indexcols ...)

SPATIAL INDEX [indexname] (indexcol)

Foreign key constraints: If you are using InnoDB tables, here you can formulate foreign key con-
straints. The syntax is as follows:

[CONSTRAINT [fr_keyname]]

FOREIGN KEY [c1_keyname] (column1) REFERENCES table2 (column2)

[ON DELETE {CASCADE | SET NULL | NO ACTION | RESTRICT}]

[ON UPDATE {CASCADE | SET NULL | NO ACTION | RESTRICT}]

This means that tblname.column1 is a foreign key that refers to table2.column2. More details
can be found under ALTER TABLE … ADD FOREIGN KEY.

tbloptions : Here various table options can be specified, though here we shall exhibit only the
most important of them. Not all options are possible with every table type. Information on the
different table types and their variants can be found in Chapter 8.

ENGINE = MYISAM | HEAP | INNODB

ROW_FORMAT= default | dynamic | static | compressed

AUTO_INCREMENT gives the initial value for the counter of an AUTO_INCREMENT column
(e.g., 100000 if you wish to have six-digit integers). CHECK_SUM=1 has the effect that a check
sum is stored for each data record, which helps in reconstruction if the database is damaged.
PACK_KEYS=1 results in a smaller index file. This speeds up read access, but slows down
changes. DELAY_KEY_WRITE = 1 results in indexes not being updated each time a change
to a record is made. Rather, they are updated every now and then.

AUTO_INCREMENT = n

CHECKSUM = 0 | 1

PACK_KEYS = 0 | 1

DELAY_KEY_WRITE = 0 | 1

With COMMENT you can save a brief text, for example, to describe the purpose of the table.
The comment can be read with SHOW CREATE DATABASE dbname:

COMMENT= ‘comment’.

Since MySQL 4.1, you can specify the character set and sort order for a table. (You can also set
these parameters for a single column.) If no character set is specified, then the default charac-
ter set for the table or that of the MySQL server is used:

[DEFAULT] CHARACTER SET charset [COLLATE collname].

The CREATE TABLE syntax contains some duplication. For example, a primary index can be
declared in two different ways, either as an attribute of a column (coloptions) or as an independent
index (index). The result is, of course, the same. It is up to you to decide which form you prefer.

MySQL has the property that in many cases changes the definition of a column, for example by
providing a suitable DEFAULT value if none is specified (silent column changes; see also Chapter 9).
For this reason it is recommended that after you create a table, you take a look at the actual MySQL
table definition with SHOW CREATE TABLE name.

Here is an example:

CREATE TABLE test (id INT NOT NULL AUTO_INCREMENT,
data INT NOT NULL,
txt VARCHAR(60),
PRIMARY KEY (id))

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tblname
[(newcolname1 coltype coloptions reference,
newcolname2 coltype coloptions reference …
[, key1, key2 …]

)]
[tbloptions]
[IGNORE | REPLACE] SELECT …

With this variant of the CREATE TABLE command, a table is filled with the result of a SELECT com-
mand. The individual columns of the new table take their types from the data types of the SELECT
command and thus do not have to be (and may not be!) declared explicitly.

Unfortunately, neither indexes nor attributes such as AUTO_INCREMENT are carried over
from the old table. There can also be changes in column types, such as VARCHAR columns turning
into CHAR.

If an index is to be created in the new table for individual columns (e.g., PRIMARY KEY (id)),
then this can be specified. Moreover, there is the option of defining new columns (e.g., an AUTO
INCREMENT column.

The key words IGNORE and REPLACE specify how MySQL should behave if several records with
the same value are placed by the command into a UNIQUE column. With IGNORE, the existing record
is retained, and new records are ignored. With REPLACE existing records are replaced by the new ones.
If neither option is used, an error message results.

If a table is to be copied one to one, it is better to create the new table with CREATE TABLE
table2 LIKE table1 (since MySQL 4.1) and then copy in the data with INSERT INTO table2 SELECT *
FROM table1.

Here is an example:

CREATE TEMPORARY TABLE tmp
SELECT id, authName FROM authors WHERE id<20

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] newtable LIKE oldtable

This command, since MySQL 4.1, creates a new, empty table newtable corresponding to the decla-
ration of the existing table oldtable.

CREATE TRIGGER name time event
ON tablename
FOR EACH ROW code

CREATE TRIGGER defines SQL code that in the future will be executed automatically before or after
particular database commands for the affected table. For each event only one trigger procedure is
allowed. The execution of CREATE TRIGGER requires the Super privilege.

name : Specifies the name of the trigger. Currently (MySQL 5.0.3) like-named triggers are allowed
within a single database if they are defined for different tables. In future MySQL versions a trig-
ger name must be unique for the entire database.

time : BEFORE | AFTER

Specifies whether the trigger code is to be executed before or after the trigger event.

event : INSERT | UPDATE | DELETE

Specifies for what database operations the trigger code is to be executed.

tablename : Specifies for which table the trigger is defined.

code : Gives the trigger code. The syntax is the same as for a stored procedure.

Here is an example:

CREATE TRIGGER test_before_insert
BEFORE INSERT ON test FOR EACH ROW

BEGIN
IF NEW.percent < 0.0 OR NEW.percent > 1.0 THEN
SET NEW.percent = NULL;

END IF;
END

CREATE [algoption] VIEW viewname [(columns)] AS command [chkoption]

CREATE VIEW creates, since MySQL 5.0, a View. This is a virtual table based on a SELECT command.
If you wish to replace an existing View, execute the command in the form CREATE OR REPLACE ….
The command requires the Create View privilege.

algoption: ALGORITHM = UNDEFINED | MERGE | TEMPTABLE

ALGORITHM tells how the View is to be represented internally. This option was not documented
as this book was being completed. By default, MySQL always uses UNDEFINED (can be deter-
mined with SHOW CREATE TABLE viewname).

viewname : Specifies the name of the View. The same rules hold as for table names. The name
of the View may not be the same as that of the table.

columns: The columns of a View have as a rule the same names and data types as the columns
of the underlying table. With columns you can specify different names and data types. The syn-
tax is the same as for CREATE TABLE.

command : Here you give a SELECT command. The data in the View are the result of this command.

chkoption: WITH [CASCADED | LOCAL] CHECK OPTION

WITH CHECK OPTION means that changes to the View records are allowed only if the WHERE
conditions of the SELECT command are satisfied. WITH CHECK OPTION is of course relevant
only if the View is changeable.

The variant WITH LOCAL CHECK OPTION affects Views that have been derived from other
Views. LOCAL means that only the WHERE conditions of the CREATE VIEW command are con-
sidered, and not the WHERE conditions of higher-level Views.

The opposite effect is achieved with WITH CASCADED CHECK OPTION: Now the WHERE con-
ditions of all higher-level Views are considered. If you specify neither CASCADED nor LOCAL,
the default is CASCADED.

Here is an example:

CREATE VIEW v1 AS
SELECT titleID, title, subtitle FROM titles
ORDER BY title, subtitle

DELETE [deleteoptions] FROM tablename
[WHERE condition]
[ORDER BY ordercolumn [DESC]]
[LIMIT maxrecords]

DELETE deletes the records in a table encompassed by condition.

deleteoptions: LOW_PRIORITY, QUICK, IGNORE

LOW_PRIORITY has the effect that the data records are deleted only when all read operations
are complete. (The goal of this option is to avoid having SELECT queries unnecessarily delayed
due to DELETE operations.)

QUICK has the effect that during deletion, an existing index is not optimized. This speeds up
the DELETE command, but it can lead to a somewhat inefficient index.

IGNORE has the effect since MySQL 4.1 that the DELETE command is continued even if errors
occur. All errors are converted to warnings, which can be read with SHOW WARNINGS.

condition: This condition specifies which records are to be deleted. For the syntax of condition,
see SELECT.

ordercolumn: With ORDER BY you can first sort the data to be deleted. This makes sense only in
combination with LIMIT, in order, for example, to delete the first or last ten records (according
to some sort criterion).

maxrecords: With LIMIT, the maximum number of records that may be deleted is specified.

If DELETE is executed without conditions, then all records of the table are deleted (so be care-
ful!). DELETE without conditions cannot be part of a transaction. If a transaction is open, it is closed
with COMMIT before the DELETE command is executed. If you wish to delete large tables com-
pletely, it is more efficient to use the command TRUNCATE.

DELETE [deleteoptions] table1, table2 … FROM table1, table2, table3 …
[USING columns]
WHERE conditions

This variant of DELETE (available since version 4.0) deletes records from tables table1, table2, etc.,
where the data of additional tables (table3, etc.) are considered in the search criteria.

After DELETE, all tables from which data are to be deleted must be specified. After FROM, all
DELETE tables must appear, as well as any additional tables that serve only in formulating the
search criteria.

deleteoptions : Here you can specify options as in a usual DELETE command.

columns : Here fields that link the tables can be specified (see also SELECT). This assumes that
the linking field has the same name in both tables.

conditions : In addition to the usual delete criteria, here one may specify linking conditions
(e.g., WHERE table1.id = table2.forgeinID).

DESCRIBE tablename [columnname]

DESCRIBE returns information about the specified table in the current database (or about a partic-
ular column of this table). Instead of columnname, a pattern with the wild cards _ and % can be
given. In this case, DESCRIBE displays information about those columns matching the pattern.
DESCRIBE returns the same information as EXPLAIN or SHOW TABLE or SHOW COLUMN.

DO selectcommand

DO is a variant of SELECT and has basically the same syntax. The difference between the two is that
DO returns no results. For example, DO can be used for variable assignment, for which it is some-
what faster than SELECT (thus, for example, DO @var:=3).

DROP DATABASE [IF EXISTS] dbname

DROP DATABASE deletes an existing database with all of its data. This cannot be undone, so be
careful! If the database does not exist, then an error is reported. This error can be avoided with an
IF EXISTS.

In the execution of this command, all files in the directory dbname with the following endings
are deleted, among others: .BAK, .DAT, .HSH, .ISD, .ISM, .MRG, .MYD, .MYI, .db, .frm, as well as the file
db.opt.

DROP FUNCTION fnname

DROP FUNCTION deletes the specified stored procedure or deactivates an external auxiliary func-
tion that was made available to MySQL earlier with CREATE FUNCTION.

DROP INDEX indexname ON tablename

DROP INDEX removes an index from the specified table. Usually, indexname is the name of the
indexed column, or else PRIMARY for the primary index.

DROP PROCEDURE prname

DROP PROCEDURE deletes the specified stored procedure.

DROP [TEMPORARY] TABLE [IF EXISTS] tablename1, tablename2 … [options]

DROP TABLE deletes the specified (temporary) tables irrevocably. The option IF EXISTS avoids an
error message if the tables do not exist.

Note that DROP TABLE automatically ends a running transaction (COMMIT).
DROP TEMPORARY TABLE (available since MySQL 4.1) deletes only temporary tables. In con-

trast to the ordinary DROP TABLE command, this one has no influence over running transactions.

options: RESTRICT | CASCADE

The two options RESTRICT und CASCADE are currently nonfunctional. They currently should
simplify the porting of SQL code to other database systems.

DROP TRIGGER tablename.triggername

DROP TRIGGER deletes the specified trigger.

DROP VIEW [IF EXISTS] viewname1, viewname2 … [options]

DROP VIEW deletes the specified Views irrevocably. The same options are available as for DROP TABLE.

EXPLAIN tablename

EXPLAIN returns a table with information about all the columns of a table (field name, field type,
index, default value, etc.). The same information can be determined as well with SHOW COLUMNS
or DESCRIBE, or via an external program such as mysqlshow.

EXPLAIN SELECT selectcommand

EXPLAIN SELECT returns a table with information about how the specified SELECT command was
executed. These data can help in speed optimization of queries, and in particular in deciding which
columns of a table should be indexed. (The syntax of selectcommand was described under SELECT.
An example of the use of EXPLAIN SELECT and a brief description of the resulting table can be found
in Chapter 8.)

FLUSH flushoptions

FLUSH empties the MySQL internal intermediate storage. Any information not stored already is
thereby stored in the database. The execution of FLUSH requires the RELOAD privilege.

flushoptions: Here one may specify which cache(s) should be emptied. Multiple options should
be separated by commas.

DES_KEY_FILE: Reloads the key files for the functions DES_ENCRYPT and DES_DECRYPT.

HOSTS: mpties the host cache table. This is necessary especially if in the local network the
arrangement of IP numbers has changed.

LOGS: Closes all logging files and then reopens them. In the case of update logs, a new logging file
is created, whereby the number of the file ending is increased by 1 (name.000003 ➤ name.00004).
With error logs the existing file is renamed to name.old and a new error log file is created.

QUERY CACHE: Defragments the query cache so that it can use its memory more efficiently.
The cache is not emptied. (If you wish to do this, execute RESET QUERY CACHE.)

PRIVILEGES: Reloads the privileges database mysql (corresponds to mysqladmin reload).

STATUS: Sets most status variables to 0.

TABLES: Closes all open tables.

TABLE[S] tblname1, tblname2, …: Closes the specified tables.

TABLES WITH READ LOCK: As above, except that additionally, LOCK is executed for all tables,
which remains in force until the advent of a corresponding UNLOCK table.

USER_RESOURCES: Resets the counters for MAX_QUERIES_PER_HOUR,
MAX_UPDATES_PER_HOUR, and MAX_CONNECTIONS_PER_HOUR (see maxlimits
under GRANT).

Most FLUSH operations can also be executed through the auxiliary program mysqladmin.

GRANT privileges ON objects
TO users [IDENTIFIED BY 'password']
[REQUIRE ssloptions]
[WITH GRANT OPTION | maxlimits]

GRANT helps in the allocation of access privileges to database objects.

ALTER, CREATE, CREATE TEMPORARY TABLES, CREATE VIEW, DELETE, DROP, EXECUTE, FILE,
INDEX, LOCK TABLE, PROCESS, REFERENCES, RELOAD, REPLICATION CLIENT, REPLICATION
SLAVE, SELECT, SHOW DATABASE, SHOW VIEW, SHUTDOWN, SUPER, UPDATE

If you wish to set all (or no) privileges, then specify ALL (or USAGE). (The second variant is use-
ful if you wish to create a new MySQL user to whom as of yet no privileges have been granted.)
The Grant privilege can be set only via WITH GRANT OPTION; that is, ALL does not include the
Grant privilege.

If the privileges are to hold only for certain columns of a table, then specify the columns in
parentheses. For example, you may specify GRANT SELECT(columnA, columnB).

objects: Here databases and tables are specified. The following syntactic variants are available:

databasename.tablename only this table in this database

databasename.spname only this stored procedure

databasename.* all tables in this database

tablename only this table in the current database

* all tables of the current database

. global privileges

Wild cards may not be used in the database names.

users: Here one or more (comma-separated) users may be specified. If these users are not yet
known to the user table, they are created. The following variants are allowed:

username@hostname only this user at hostname

‘username’@’hostname’ as above, with special characters

username this user at all computers

‘’@hostname all users at hostname

‘’ all users at all computers

password: Optionally, with IDENTIFIED BY, a password in plain text can be specified. GRANT
encrypts this password with the function PASSWORD before it is entered in the user table. If
more than one user is specified, then more than one password may be given:

TO user1 IDENTIFIED BY ‘pw1’, user2 IDENTIFIED BY ‘pw2’, …

ssloptions : If access to MySQL is to be SSL encrypted or if user identification is to take place
with X509, you can specify the required information for establishing the connection here. The
syntax is as follows:

REQUIRE SSL | X509 [ISSUER ‘iss’] [SUBJECT ‘subj’] [CIPHER ‘ciph’]

REQUIRE SSL means that the connection must be SSL encrypted (thus a normal connection is
not permitted). REQUIRE X509 means that the user must possess a valid certificate for identifi-
cation that meets the X509 standard.

ISSUER specifies the required issuer of the certificate. (Without ISSUER, the origin of the cer-
tificate is not considered.)

SUBJECT specifies the required content of the certificate’s subject field. (Without SUBJECT, the
content is not considered.)

CIPHER specifies the required SSL encryption algorithm. (SSL supports various algorithms.
Without this specification, all algorithms are allowed, including older ones that may have secu-
rity loopholes.)

maxlimits: Here you can specify how many connections per hour the user is allowed to estab-
lish, as well as the number of SELECT and INSERT/UPDATE/DELETE commands. The default
setting for all three values is 0 (no limit):

MAX_QUERIES_PER_HOUR n

MAX_UPDATES_PER_HOUR n

MAX_CONNECTIONS_PER_HOUR n

If the specified user does not yet exist and GRANT is executed without IDENTIFIED BY, then
the new user has no password (which represents a security risk). On the other hand, if the user
already exists, then GRANT without IDENTIFIED BY does not alter the password. (There is thus no
danger that a password can be accidentally deleted by GRANT.)

It is impossible with GRANT to delete privileges that have already been granted (for example,
by executing the command again with a smaller list of privileges). If you wish to take away privi-
leges, you must use REVOKE.

GRANT may be used only by users with the Grant privilege. The user that executes GRANT may
bestow only those privileges that he himself possesses. If the MySQL server is started with the option
safe-user-create, then to create a new user, a user needs the Insert privilege for the table mysql.user
in addition to the Grant privilege.

Since MySQL 5.0.3 GRANT can be used to create new users only by those with the Create User
privilege.

HANDLER tablename OPEN [AS aliasname]
HANDLER tablename READ FIRST|NEXT [WHERE condition LIMIT n, m]
HANDLER tablename READ indexname FIRST|NEXT|PREV|LAST [WHERE … LIMIT …]
HANDLER tablename CLOSE

Since MySQL 4.0.3, HANDLER enables direct access to MyISAM and InnoDB tables. This command
can be used as a more efficient substitute for simple SELECT commands. This is particularly true if
records are to be processed one at a time or in small groups.

The command is easy to use: First, access to a table is achieved with HANDLER OPEN. Then,
HANDLER READ may be executed as often as you like, generally the first time with FIRST, and there-
after with NEXT, until no further results are forthcoming. The command returns results as with
SELECT * (that is, all columns). HANDLER CLOSE terminates access.

HANDLER tablename READ reads the records in the order in which they were stored. On the
other hand, the variant HANDLER tablename READ indexname uses the specified index. If you wish
to use a primary index, you must use the form `primary`.

HANDLER was not conceived for use with typical MySQL applications, if for no other reason
than that the code would be completely incompatible with every other database server. HANDLER
is suitable for programming low-level tools (e.g., backup tools or drivers that simulate simple data
access with a cursor). Note that HANDLER does not block tables (no locking), and therefore, the
table can change while its data are being read.

HANDLER should not be used in stored procedures. Instead, use a cursor. HANDLER also has
nothing to do with the command DECLARE HANDLER, which is used for error-handling in stored
procedures.

HELP
HELP contents
HELP functionname

Since MySQL 4.1, HELP returns a brief help text. Instead of HELP the abbreviation ? can be used.

INSERT [options1] [INTO] tablename [(columnlist)]
VALUES (valuelist1), (…), … [options2]

INSERT [options1] [INTO] tablename
SET column1=value1, column2=value2 … [options2]

INSERT [options1] [INTO] tablename [(columnlist)]
SELECT …

The INSERT command has the job of inserting new records into an existing table. There are three
main syntax variants. In the first (and most frequently used) of these, new data records are specified
in parentheses. Thus a typical INSERT command looks like this:

INSERT INTO tablename (columnA, columnB, columnC)
VALUES ('a', 1, 2), ('b', 7, 5)

The result is the insertion of two new records into the table. Columns that are allowed to be
NULL, for which there is a default value, or which are automatically filled in by MySQL via AUTO_IN
do not have to be specified. If the column names (i.e., in columnlist) are not given, then in VALUES
all values must be given in the order of the columns.

With the second variant, only one record can be changed (not several simultaneously). Such a
command looks like this:

INSERT INTO tablename SET columnA='a', columnB=1, columnC=2

For the third variant, the data to be inserted come from a SELECT instruction.

options1: The behavior of this command can be controlled with options:

IGNORE has the effect that the insertion of records with existing values is simply ignored for
UNIQUE KEY columns. (Without this option, the result would be an error message.)

LOW_PRIORITY | DELAYED | HIGH_PRIORITY have influence over when the insertion opera-
tion is carried out.

In LOW_PRIORITY and DELAYED, MySQL delays its storage operation until there are no pend-
ing read accesses to the table. The advantage of DELAYED is that MySQL returns OK at once,
and the client does not need to wait for the end of the saving operation. However, DELAYED
cannot be used if then an AUTO_INCREMENT value with LAST_INSERT_ID() is to be deter-
mined. DELAYED should also not be used if a LOCK was placed on the table. (The reason is
this: For executing INSERT DELAYED, a new MySQL thread is started, and table locking uses
threads in its operation.)

The records to be inserted are stored in RAM until the insertion operation has actually been
carried out. If MySQL should be terminated for some reason (crash, power outage), then the
data are lost.

HIGH_PRIORITY normally has no effect; that is, INSERT inserts the data at once. HIGH_PRIORITY
is designed only for the case that the server was started with the option low-priority-updates.
This option has the effect that INSERT commands are stored in LOW_PRIORITY mode.
HIGH_PRIORITY overwrites this default setting.

options2 : ON DUPLICATE KEY UPDATE column1=value1, column2=value2 …

When a UNIQUE or PRIMARY index is violated during the insertion of new data, this option
has the effect since MySQL 4.1 of replacing the existing record. If id is a PRIMARY column and
an entry with id=1 already exists, then

INSERT INTO tablename (id, data) VALUES (1, 10)

ON DUPLICATE KEY UPDATE data=data+10

has the same effect as

UPDATE tablename SET data=data+10 WHERE id=1.

Here VALUE(columnname) can be used in the column allocation. This function returns the
value of the affected column. It is useful when a general UPDATE instruction is to be formu-
lated for several records:

INSERT INTO tablename (id, data) VALUES (1, 10), (2, 15)
ON DUPLICATE KEY UPDATE data=data+VALUE(data)

Note that in using default values, there are special rules for TIMESTAMP and
AUTO_INCREMENT values. (These rules hold for UPDATE commands as well.)

Columns with default values: If you want MySQL to use the default value for a column, then
either do not specify this column in your INSERT command, or pass an empty character string
(not NULL) as the value:

INSERT INTO table (col1, col2_with_default_value) VALUES ('abc', '')

TIMESTAMP columns: If you want MySQL to insert the current time in the column, then either
omit this column in your INSERT command, or pass the value NULL (not an empty character
string). It is also allowed to pass a character string with a timestamp value if you wish to store
a particular value.

AUTO_INCREMENT columns: Here as well, either you don’t pass the column, or you pass the
value NULL if MySQL is to determine the AUTO_INCREMENT value itself. You may pass any
other value that is not otherwise in use.

JOIN

JOIN is not actually an SQL command. This key word is mostly used as part of a SELECT command,
to link data from several tables. JOIN will be described under SELECT.

KILL threadid

This command terminates a specified thread (subprocess) of the MySQL server. It is allowed only
to those users who possess the Super privilege. A list of running threads can be obtained via SHOW
PROCESSLIST (where again, this command assumes the Process privilege). Threads can also be ter-
minated via the external program mysqladmin.

LOAD DATA [loadoptions] INFILE 'filename' [duplicateopt]
INTO TABLE tablename
[importopt]
[IGNORE ignorenr LINES]
[(columnlist)]

LOAD DATA reads a text file and inserts the data contained therein line by line into a table as data
records. LOAD DATA is significantly faster then inserting data by multiple INSERT commands.

Normally, the file filename is read from the server’s file system, on which MySQL is running.
(For this, the FILE privilege is required. For security reasons, the file must either be located in the
directory of the database or be readable by all users of the computer.)

If the text file to be imported has characters outside the ASCII character set, you must set the
character set of the text with SET NAMES before the command LOAD DATA.

loadoptions: LOCAL has the effect that the file filename on the local client computer is read
(that is, the computer on which the command LOAD DATA is executed, not on the server com-
puter). For this, no FILE privilege is necessary. (The FILE privilege relates only to the file system
of the MySQL server computer.) Note that LOAD DATA LOCAL can be deactivated, depending
on how the MySQL server was compiled and configured (option local-infile).

LOW PRIORITY has the effect that the data are inserted into the table only if no other user is
reading the table.

CONCURRENT makes it possible in many cases for data to be inserted into a table and read out
at the same time (by other clients). However, this works only for MyISAM tables and only when
the new records are inserted exclusively at the end of the table file. The table file is not allowed
to contain any free memory (holes). You can ensure this via OPTIMIZE TABLE.

filename : If a file name is given without the path, then MySQL searches for this file in the direc-
tory of the current database (e.g., ‘bulk.txt’).

If the file name is given with a relative path, then the path is interpreted by MySQL relative to
the data directory (e.g., ‘mydir/bulk.txt’).

File names with absolute paths are taken without alteration (for example, ‘/tmp/mydir/bulk.txt’).

duplicateoptions : IGNORE | REPLACE determine the behavior of MySQL when a new data record
has the same UNIQUE or PRIMARY KEY value as an existing record. With IGNORE, the existing
record is preserved, and the new records are ignored. With REPLACE, existing records are replaced
by the new ones. If neither of these options is used, then the result is an error message.

importoptions: Here is specified how the data should be formatted in the file to be imported.
The entire importoptions block looks like this:

[FIELDS

[TERMINATED BY ‘fieldtermstring’]

[ENCLOSED BY ‘enclosechar’]

[ESCAPED BY ‘escchar’]]

[LINES TERMINATED BY ‘linetermstring’]

fieldtermstring specifies the character string that separates the individual columns within the
row (e.g., a tab character).

enclosechar specifies the character that should stand before and after individual entries in the
text file (usually the single or double quote character for character strings). If an entry begins
with this character, then that character is removed from the beginning and end. Entries that do
not begin with the enclosechar character will still be accepted. The use of the character in the
text file is thus to some extent optional.

escchar specifies which character is to be used to mark special characters (usually the back-
slash). This is necessary if special characters appear in character strings in the text file that are
also used to separate columns or rows. Furthermore, MySQL expects the zero-byte in the form
\0, where the backslash is to be replaced as necessary by escchar if a character has been speci-
fied for escchar).

linetermstring specifies the character string with which rows are to be terminated. With
DOS/Windows text files this must be the character string ‘ \r\n’.

In these four character strings, the following special characters can be specified:

\0 0 byte

\b backspace

\n newline

\r carriage return

\s space

\t tab

\’ single quote (‘)

\” double quote (“)

\\ backslash

Furthermore, the character strings can be given in hexadecimal form (e.g., 0x22 instead of ‘\’’).

If no character strings are given, then the following is the default setting:

FIELDS TERMINATED BY ‘\t’ ENCLOSED BY ‘’ ESCAPED BY ‘\\’

LINES TERMINATED BY ‘\n’

ignorenr: This value specifies how many lines should be ignored at the beginning of the text
file. This is particularly useful if the first lines contain table headings.

columnlist : If the order of the columns in the text file does not exactly correspond to that in
the table, then here one may specify which file columns correspond with which table columns.
The list of columns must be set in parentheses: for example, (firstname, lastname, birthdate).

If TIMESTAMP columns are not considered during importation or if NULL is inserted, then MySQL
inserts the actual time. MySQL exhibits analogous behavior with AUTO_INCREMENT columns.

LOAD DATA displays as result, among other things, an integer representing the number of
warnings.

Starting with MySQL 4.1 you will can display all warnings and errors caused by LOAD DATA
with the commands SHOW WARNINGS and SHOW ERRORS.

Instead of LOAD DATA, you can also use the program mysqlimport. This program creates a link
to MySQL and then uses LOAD DATA. The inverse of LOAD DATA is the command SELECT … INTO
OUTFILE. With it you can export a table into a text file. Further information and concrete examples
can be found in Chapter 14.

LOAD DATA FROM MASTER

This command since MySQL 4.0 copies all MyISAM tables from master to slave of a replication sys-
tem. The tables of the mysql database are not copied. After copying, replication is begun on the slave
(that is, the variables MASTER_LOG_FILE and MASTER_LOG_POS are set, which normally must be
set with CHANGE MASTER TO).

This command can be used in many cases, in particular when no InnoDB tables are being used,
for a convenient setting up of a replication system. It assumes that the replication user possesses the
privileges Select, Reload, and Super.

LOAD INDEX INTO CACHE indexspec1, indexspec2 …

This command loads all specified indexes of MyISAM tables into the cache. This makes sense only
in rare cases, such as carrying out repeatable benchmark tests.

indexspec : Specifies the MyISAM tables to be loaded. The following syntax is used:

tablename [[INDEX|KEY] (indexname1 …)] [IGNORE LEAVES]

Currently, the command loads all indexes of the table into the cache. Thus the specification of
individual indexes will make sense only in the future. IGNORE LEAVES means that only a part
of the index is to be loaded.

LOAD TABLE dbname.tablename FROM MASTER

This command copies a table in a replication system from master to slave, if the table does not yet
exist there. The purpose of the command is actually to simplify debugging for MySQL developers.
However, the command can possibly also be used for repairing a replication system after errors
have been detected. The execution of the command requires that the replication user possess the
privileges Select, Reload, and Super. LOAD TABLE works only for MyISAM tables.

LOCK TABLE table1 [AS aliasname] locktype, table2 [AS alias2] locktype, …

LOCK TABLE prevents other MySQL users from executing write or read operations on the specified
tables. If a table is already blocked by another user, then the command waits (unfortunately, with-
out a timeout value, thus theoretically forever) until that block is released.

Table LOCKs ensure that during the execution of several commands no data are changed by other
users. Typically, LOCKs are necessary when first a SELECT query is executed and then tables are changed
with UPDATE, where the results of the previous query are used. (For a single UPDATE command, on the
other hand, no LOCK is necessary. Individual UPDATE commands are always completely executed by
the MySQL server without giving other users the opportunity to change data.)

LOCK TABLE should not be used on InnoDB tables, for which you can achieve much more effi-
cient locking using transactions and the commands SELECT … IN SHARE MODE and SELECT … FOR
UPDATE.

Note that LOCK TABLE commands end a running transaction as with COMMIT. For future ver-
sions of MySQL there are InnoDB-specific LOCK variants planned that will be able to be executed
outside of transactions.

locktype : In MySQL 5.0 there are four LOCK types available:

READ: All MySQL users may read the table, but no one may change anything (including the
user who executed the LOCK command). A READ LOCK is allocated only when the table is not
blocked by other WRITE LOCKs. (Existing READ LOCKs, on the other hand, are no hindrance
for new READ LOCKs. It is thus possible for several users to have simultaneous READ LOCKs on
the same table.)

READ LOCAL: Like READ, except that INSERTs are allowed if they do not change existing data
records.

WRITE: The current user may read and change the table. All other users are completely blocked.
They may neither change data in the blocked table nor read it. A WRITE LOCK is allocated only
if the table is not blocked by other LOCKs (READ or WRITE). Until the WRITE LOCK is lifted,
other users can obtain neither a READ LOCK nor a WRITE LOCK.

LOW PRIORITY WRITE : Like WRITE, except that during the waiting time (that is, until all other
READ and WRITE LOCKs have been ended) other users may obtain on demand a new READ
LOCK. However, this means as well that the LOCK will be allocated only when there is no other
user who wishes a READ LOCK.

In future versions of MySQL there will presumably be two additional LOCK variants especially
for InnoDB tables. These two variants are not yet officially documented, and so it is possible
that the following description is inaccurate.

IN SHARE MODE : This LOCK type will have the same effect as SELECT * FROM table and will
protect the entire table from changes by other connections. (INSERT, UPDATE, and DELETE
commands of other connections are thus blocked until the end of the lock.)

There are two advantages over the SELECT command: The InnoDB table driver can execute
locking more efficiently, and the LOCK command is compatible with other database systems
(Oracle, PostgreSQL, etc.).

IN EXCLUSIVE MODE : This LOCK type is even more restrictive and blocks SELECT commands
of other connections if this option is executed with the option LOCK IN SHARE MODE or LOCK
FOR UPDATE.

Table LOCKs can increase the speed with which several database commands can be executed
one after the other (of course, at the cost that other users are blocked during this time).

MySQL manages table LOCKs by means of a thread, where each connection is associated with its
own thread. Only one LOCK command is considered per thread. (But several tables may be included.)
As soon as UNLOCK TABLES or LOCK is executed for any other table, then all previous locks become
invalid.

For reasons of efficiency, it should definitely be attempted to keep LOCKs as brief as possible
and to end them as quickly as possible by UNLOCK. LOCKs end automatically when the current
process ends (that is, for example, when the connection between server and client is broken).

OPTIMIZE TABLE tablename

OPTIMIZE TABLE removes, since MySQL 4.1.3, unused storage space from MyISAM and InnoDB
tables and ensures that associated data in a data record are stored together.

OPTIMIZE TABLE should be regularly executed for tables whose contents are continually being
changed (many UPDATE and DELETE commands). This speeds up data access. With MyISAM tables
the database file is also made smaller. The table space of InnoDB tables, on the other hand, cannot
in principle be made smaller.

PROCEDURE procname

MySQL can be extended with external procedures. Their code must be formulated in the C++ pro-
gramming language. To use such functions in SELECT commands, the key word PROCEDURE must
be used.

As an example of such a procedure, the MySQL program code contains the function ANALYSE.
This procedure can be used to analyze the contents of a table in the hope of determining a better
table definition. The function is called thus:

SELECT * FROM tablename PROCEDURE ANALYSE()

As with the creation of user-defined functions (UDFs; see CREATE FUNCTION), the program-
ming of procedures requires a great deal of MySQL background knowledge. Further information can
be found in the MySQL documentation: http://dev.mysql.com/doc/mysql/en/extending-mysql.html.

An elegant and much simpler alternative to UDFs is stored procedures, which have been avail-
able since MySQL 5.0.

PURGE MASTER LOGS TO 'hostname-bin.n'

This command deletes all binary logging files that are older than the file specified. Execute this
command only when you are sure that the logging files are no longer needed, that is, when all slave
computers have synchronized their databases. This command can be executed only on the master
computer of a replication system, and only if the Super privilege has been granted. See also RESET
MASTER.

RENAME TABLE oldtablename TO newtablename

RENAME TABLE gives a new name to an existing table. It is also possible to rename several tables,
e.g., a TO b, c TO d, etc.

There is no command for giving a new name to an entire database. If you are using MyISAM
tables, then to do so, you can stop the MySQL server, rename the database directory and then restart
the server. Note that you may have to change access privileges in the mysql database. With InnoDB
tables, you must make a backup (mysqldump) and then import the tables into a new database.

REPAIR TABLE tablename1, tablename2, … [TYPE = QUICK]

REPAIR TABLE attempts to repair a defective table file. With the option TYPE = QUICK only the index
is re-created.

REPAIR TABLE can be used only with MyISAM tables. Instead of this command, you may also
use the external program myisamchk -r tblfile. (If REPAIR TABLE does not return OK as result, then
you might try myisamchk -o. This program offers more repair possibilities than REPAIR TABLE.)

REPLACE [INTO]

REPLACE is a variant of INSERT. The only difference relates to new records whose key word is the
same as that of an existing record. In this case, the existing record is deleted and the new one is
stored in the table. Since the behavior with duplicates is so clearly defined, REPLACE does not have
the IGNORE option possessed by the INSERT command.

RESET MASTER

This command deletes all binary logging files including the index file hostname-bin.index. With this
command, replication can be restarted at a particular time. For this, RESET SLAVE must be exe-
cuted on all slave systems. Before the command is executed it must be ensured that the databases
on all slave systems are identical to those of the master system. This command assumes the reload
privilege.

If you wish to delete only old (no longer needed) logging files, then use PURGE MASTER LOGS.

RESET QUERY CACHE

This command deletes all entries from the query cache. It assumes the reload privilege.

RESET SLAVE

This command reinitializes the slave system. The contents of master.info (and with it the current
logging file and its position) are deleted. The command assumes the reload privilege.

This command makes sense only if after some problems the databases are to be set up on the
slave based on previous snapshots so that the slave system then can synchronize itself by replication, or
when RESET MASTER was executed on the master system (so that all logging files are deleted there). In
this case, first SLAVE STOP and then SLAVE START should be executed on the slave system.

RESTORE TABLE tblname FROM '/backup/directory'

RESTORE TABLE copies the files of the specified table from a backup directory into the data direc-
tory of the current database. RESTORE TABLE is the inverse of BACKUP TABLE.

BACKUP and RESTORE do not work for InnoDB tables. Both commands are considered
deprecated and should not be used if possible. Alternatives are external backup tools such as
mysqldump, mysqlhotcopy, and the InnoDB backup utility.

REVOKE privileges ON objects FROM users

REVOKE is the inverse of GRANT. With this command you can remove individual privileges previ-
ously granted. The syntax for the parameters privileges, objects, and users can be read about under
the GRANT command. The only difference relates to the Grant privilege: To revoke this privilege
from a user, REVOKE can be used in the following form: REVOKE GRANT OPTION ON … FROM ….

Although GRANT inserts new users into the mysql.user table, REVOKE is incapable of deleting
this user. You can remove all privileges from this user with REVOKE, but you cannot prevent this user
from establishing a connection to MySQL. (If you wish to take that capability away as well, you must
explicitly remove the entries from the user database with the DELETE command.)

Please note that in the MySQL access system you cannot forbid what is allowed at a higher level.
If you allow x access to database d, then you cannot exclude table d.t with REVOKE. If you wish to
allow x access to all tables of the database d with the exception of table t, then you must forbid access
to the entire database and then allow access to individual tables of the database (with exception of
d). REVOKE is not smart enough to carry out such operations on its own.

ROLLBACK

ROLLBACK undoes the most recent transaction. (Instead of ROLLBACK, you can confirm the pend-
ing changes with COMMIT and thereby finalize their execution.) BEGIN/COMMIT/ROLLBACK work
only if you are working with transaction-capable tables. Further information and examples on
transactions can be found in Chapter 10.

ROLLBACK TO SAVEPOINT name

ROLLBACK ends the current transaction. All SQL commands executed since the specified SAVEPOINT
are canceled. Commands before the SAVEPOINT are accepted. The command has been available since
version 4.0.14.

SAVEPOINT name

This command sets, since MySQL version 4.0.14, a mark within the running transaction. With
ROLLBACK TO SAVEPOINT the transaction can be aborted beyond this point. SAVEPOINTs are
valid only within a transaction. They are deleted at the end of the transaction.

SELECT [selectoptions] column1 [[AS] alias1], column2 [[AS] alias2] ...
[FROM tablelist]
[WHERE condition]
[GROUP BY groupfield [ASC |DESC]]
[HAVING condition]
[ORDER BY ordercolumn1 [DESC], ordercolumn2 [DESC] ...]
[LIMIT [offset,] rows]
[PROCEDURE procname]
[LOCK IN SHARE MODE | FOR UPDATE]

SELECT serves to formulate database queries. It returns the query result in tabular form. SELECT is
usually implemented in the following form:

SELECT column1, column2, column3 FROM table ORDER BY column1

However, there are countless syntactic variants, thanks to which SELECT can be used also, for
example, for processing simple expressions.

SELECT HOUR(NOW())

Note that the various parts of the SELECT command must be given in the order presented here.

selectoptions : The behavior of this command can be controlled by a number of options:

DISTINCT | DISTINCTROW specify how MySQL should behave when a query returns several
identical records. DISTINCT and DISTINCTROW mean that identical result records should be
displayed only once. ALL means that all records should be displayed (the default setting).

Since MySQL 4.1, the sort order can also be specified for DISTINCT (which is also the basis
for determining equivalence of character strings): The syntax is DISTINCT column COLLATE
collname.

HIGH_PRIORITY has the effect that a query with higher priority than change or insert commands
will be executed. HIGH_PRIORITY should be used only for queries that need to be executed very
quickly.

SQL_SMALL_RESULT | SQL_BIG_RESULT specify whether a large or small record list is expected
as result, and they help MySQL in optimization. Both options are useful only with GROUP BY
and DISTINCT queries.

SQL_BUFFER_RESULT has the effect that the result of a query is stored in a temporary table.
This option should be used when the evaluation of the query is expected to range over a long
period of time and locking problems are to be avoided during this period.

SQL_CACHE and SQL_NO_CACHE specify whether the results of the SELECT command should be
stored in the query cache or whether such storage should be prevented. By default, SQL_CACHE
usually holds, unless the query cache is executed in demand mode (QUERY_CACHE_TYPE=2).

SQL_CALC_FOUND_ROWS has the effect that MySQL determines the total number of found
records even if you limit the result with LIMIT. The number can then be determined with a
second query SELECT FOUND_ROWS().

STRAIGHT_JOIN has the effect that data collected from queries extending over more than one
table should be joined in the order of the FROM expression. (Without STRAIGHT_JOIN, MySQL
attempts to find the optimal order on its own. STRAIGHT_JOIN bypasses this optimization
algorithm.)

column: Here column names are normally given. If the query encompasses several tables, then
the format is table.column. If a query is to encompass all the columns of the tables specified by
FROM, then you can save yourself some typing and simply specify * . (Note, however, that this
is inefficient in execution if you do not need all the columns.)

However, instead of column names, you may also use general expressions or functions, e.g., for
formatting a column (DATE_FORMAT(…)) or for calculating an expression (COUNT(…)).

With AS, a column can be given a new name. This is practical in using functions such as
HOUR(column) AS hr. The use of AS is optional. That is, HOUR(column) hr is syntactically
correct (but not as readable).

Such an alias name can then be used in most of the rest of the SELECT command (e.g., ORDER
BY hr). The alias name cannot, however, be placed in a WHERE clause.

Since MySQL 4.1, the desired sort order can be specified with COLLATE (e.g., column COLLATE
collname AS alias).

tablelist : In the simplest case, there is simply a list (separated by commas) of all tables that are
to be considered in the query. If no relational conditions (further below with WHERE) are for-
mulated, then MySQL returns a list of all possible combinations of data records of all affected
tables.

There is the possibility of specifying here a condition for linking the tables, for example in the
following forms:

table1 LEFT [OUTER] JOIN table2 ON table1.xyID = table2.xyID

table1 LEFT [OUTER] JOIN table2 USING (xyID)

table1 NATURAL [LEFT [OUTER]] JOIN

An extensive list of the many syntactic synonyms can be found in Chapter 9, where the topic
of links among several tables is covered in great detail.

Within tablelist an alias can be given for every table name. The key word AS is optional:

table1 [AS] t1, table2 [AS] t2

condition: Here is where conditions that the query results must fulfill can be formulated. Con-
ditions can contain comparisons (column1>10 or column1=column2) or pattern expressions
(column LIKE ‘%xy’), for example. Several conditions can be joined with AND, OR, and NOT.

MySQL allows selection conditions with IN:

WHERE id IN(1, 2, 3) is equivalent to WHERE id=1 OR id=2 OR id=3.

WHERE id NOT IN (1,2) is equivalent to WHERE NOT (id=1 OR id=2).

Full-text search: Conditions can also be formulated with MATCH(col1, col2) AGAINST(‘word1
word2 word3’). Thereby a full-text search is carried out in the columns col1 and col2 for the
words word1, word2, and word3. (This assumes that a full-text index for the columns col1 and
col2 has been created.)

AGAINST also supports Boolean search expressions, for example, in the form AGAINST(‘+word1
+word2 -word3’ IN BOOLEAN MODE). Here the plus sign represents a logical AND operation,
while the minus sign means that the specified word may not appear in the record. The full
syntax for search expressions can be found in Chapter 10.

WHERE versus HAVING: Conditions can be formulated with WHERE or HAVING. WHERE con-
ditions are applied directly to the columns of the tables named in FROM.

HAVING conditions, on the other hand, are applied only after the WHERE conditions to the
intermediate result of the query. The advantage of HAVING is that conditions can also be speci-
fied for function results (for example, SUM(column1) in a GROUP BY query). Alias names can
be used in HAVING conditions (AS xxx), which is not possible in WHERE.

Conditions that can be equally well formulated with WHERE or HAVING should be expressed
with WHERE, because in that case, better optimization is possible.

groupfield: With GROUP BY, you can specify a group column. If the query returns several records
with the same values for the group column, then these records are collected into a single new
record. Along with GROUP BY, in the column part of the query so-called aggregate functions are
usually placed, with which calculations can be made over grouped fields (e.g., COUNT, SUM,
MIN, MAX).

By default, grouped results are sorted as though ORDER BY had been specified for the columns.
Optionally, the sort order can be determined with ASC or DESC.

Since MySQL 4.1, the desired sort order can be given with COLLATE (e.g., GROUP BY column
COLLATE collname).

ordercolumn: With ORDER BY several columns or expressions can be specified according to
which the query result should be sorted. Sorting normally proceeds in increasing order (A, B, C,
… or 1, 2, 3, …). With the option DESC (for descending) you have decreasing order.

[offset,] row: With LIMIT the query results can be reduced to an arbitrary selection. This is to be
recommended especially when the results are to be displayed pagewise or when the number of
result records is to be limited. The position at which the results are to begin is given by offset (0
for the first data record), while row determines the maximum number of result records.

procname : This enables the call of a user-defined procedure (see the description of PROCEDURE).

MySQL does not support the formulation SELECT … INTO table, which is recognized in many
other SQL dialects. In most cases you can get around this lack with INSERT INTO … SELECT … or
CREATE TABLE tablename … SELECT ….

Locking (InnoDB Tables)
If you use transactions, then the addition of LOCK IN SHARE MODE has the effect that all records
found by the SELECT command will be blocked by a shared lock until the end of the transaction.
This has two consequences: First, your SELECT query will not be executed until there is no running
transaction that could change the result. Second, the affected records cannot now be changed by
other connections (though they can be read with SELECT) until your transaction has ended.

FOR UPDATE is even more restrictive, blocking the found records with an exclusive lock. In
contrast to a shared lock, other connections that execute SELECT … LOCK IN SHARE MODE must
now wait until the end of your transaction (of course, only if the same records are affected by
SELECT queries).

SubSELECTs
Beginning with version 4.1, MySQL supports so-called subSELECTs. This means that the results of
one query can flow into a condition of another. Examples of the use of subSELECTs can be found in
Chapter 10. Here are the syntactic variants:

SELECT … WHERE col = [ANY|ALL|SOME] (SELECT …)

In this variant the second SELECT query must return a single value (one row and one column).
This value is used for the comparison col = …. Other comparison operators are allowed as well,
such as col > … and col <= … and col <> ….

SELECT … WHERE col = ANY|SOME (SELECT …)

Here the second SELECT query can return more than one value. ANY or the equivalent key
word SOME results in all suitable values being considered. Then the entire query returns more
than one result. col = ANY … is the same as col IN … (see below).

SELECT … WHERE col = ALL (SELECT …)

The expression comparisonoperator ALL has the value TRUE if the comparison is true for all the
results of the second SELECT query or if the second SELECT query returns no results at all.

SELECT … WHERE col [NOT] IN (SELECT …)

With this variant, the second SELECT query can return a list of individual values. This list is
then processed in the form SELECT ... WHERE col IN (n1, n2, n3). In place of IN one may also
use NOT IN.

SELECT ROW(value1, value2 …) = [ANY] (SELECT col1, col2 …)

This query tests whether there exists a record that satisfies certain criteria. The result can be
either 1 (true) or NULL (false). As comparison criterion there is not a single value, but a group
of values. If the result record agrees with the ROW record, the entire query returns 1, otherwise
NULL.

If the optional key word ANY or its synonym SOME is used, the second SELECT query can return
more than one result. If at least one of these agrees with the ROW record, then the entire query
returns 1.

SELECT … WHERE [NOT] EXISTS (SELECT …)

With this variant, the second query is executed for each record found from the first SELECT
query. Only if this returns a result (at least one record) does the record from the first SELECT
query remain in the result list. EXISTS constructions are as a rule useful only if the records of
the two SELECT commands are linked with a WHERE condition.

SELECT … FROM (SELECT …) AS name WHERE …

With this variant first the SELECT command in parentheses is executed. It returns a table that
serves as the basis for the outer SELECT query. The outer SELECT command thus does not access
a preexisting table, but instead the table that was the result of the previous SELECT command.
Such tables are called derived tables. The SQL syntax prescribes that these tables must be named
using AS name.

SELECT commands can be nested within one another. Such commands are difficult to read and
understand, however. SELECT commands can also be placed in the WHERE condition of UPDATE or
DELETE commands to decide which records should be altered or deleted.

SELECT [selectoptions] columnlist
INTO @var1, @var2 …
[FROM … WHERE … GROUP BY … HAVING … ORDER BY … LIMIT …]

With this variant of the SELECT command, all columns of the result record are stored, since MySQL 5.0,
in the variables var1, var2, etc. This works only if the query returns exactly one record. (If necessary use
LIMIT 1.)

INTO @var1, @var2 … can also be placed at the end of the instruction. The following two exam-
ples are therefore equivalent:

SELECT title, subtitle INTO @mytitle, @mysub FROM titles WHERE titleID=1
SELECT title, subtitle FROM titles WHERE titleID=1 INTO @mytitle, @mysub

SELECT [selectoptions] columnlist
INTO OUTFILE 'filename' exportopt
[FROM … WHERE … GROUP BY … HAVING … ORDER BY … LIMIT …]

With this variant of the SELECT command, the records are written into a text file. Here we describe
only those options that are specific to this variant. All other points of syntax can be found under
SELECT.

filename : The file is generated in the file system of the MySQL server. For security reasons, the
file should not already exist. Moreover, you must have the FILE privilege to be able to execute
this SELECT variant.

exportoptions: Here it is specified how the text file is formatted. The entire option block looks
like this:

[FIELDS

[TERMINATED BY ‘fieldtermstring’]

[[OPTIONALLY] ENCLOSED BY ‘enclosechar’]

[ESCAPED BY ‘escchar’]]

[LINES TERMINATED BY ‘linetermstring’]

fieldtermstring specifies the character string that separates columns within a line (e.g., a tab
character).

enclosechar specifies a character that is placed before and after every entry, e.g., ‘123’ with
ENCLOSED BY ‘ \’’. With OPTIONALLY, the character is used only on CHAR, VARCHAR, TEXT,
BLOB, TIME, DATE, SET, and ENUM columns (and not for every number format, such as
TIMESTAMP).

escchar specifies the character to be used to mark special characters (usually the backslash).
This is especially necessary when in character strings of a text file special characters appear
that are also used for separating data elements.

If escchar is specified, then the escape character is always used for itself (\\) as well as for ASCII
code 0 (\0). If enclosechar is empty, then the escape character is also used as identifier of the first
character of fieldtermstring and linetermstring (e.g., \t and \n). On the other hand, if enclosechar
is not empty, then escchar is used only for enclosechar (e.g., \”), and not for fieldtermstring and
linetermstring. (This is no longer necessary, since the end of the character string is uniquely
identifiable due to enclosechar.)

linetermstring specifies the character string with which lines are to be terminated. With
DOS/Windows text files this must be the character string ‘ \r\n’.

In the four character strings, special characters can be specified, for example, \b for backspace.
The list of permissible special characters can be found at the command LOAD DATA. Moreover,
character strings can be given in hexadecimal notation (such as 0x22 instead of ‘ \’’).

As with LOAD DATA the following is the default setting:

FIELDS TERMINATED BY ‘\t’ ENCLOSED BY ‘’ ESCAPED BY ‘\\’

LINES TERMINATED BY ‘\n’

If you wish to input files generated with SELECT … INTO OUTFILE again into a table, then use
LOAD DATA. This command is the inverse of SELECT … INTO OUTFILE. Further information and
concrete application examples for both commands can be found in Chapter 14.

SELECT [selectoptions] column
INTO DUMPFILE 'filename'
[FROM … WHERE … GROUP BY … HAVING … ORDER BY … LIMIT …]

SELECT … INTO DUMPFILE has, in principle, the same function as SELECT … INTO OUTFILE (see
above). The difference is that here data are stored without any characters to indicate column or row
division.

SELECT … INTO DUMPFILE is designed for saving a single BLOB object into a file. The SELECT
query should therefore return precisely one column and one row as result. Should that not be the case,
that is, if the query returns more than one data element, then usually (and for some strange reason
not always) one receives an error message: ERROR 1172: Result consisted of more than one row.

(SELECT selectoptions) UNION [ALL] (SELECT selectoptions) unionoptions

Since MySQL 4.0 you can use UNION to unite the results of two or more SELECT queries. You thereby
obtain a result table in which the results of the individual queries are simply strung together. The indi-
vidual queries can affect different tables, though you must ensure that the number of columns and
their data types are the same.

The optional key word ALL has the effect that duplicates (that is, results that arise in more than
one SELECT query) appear in the end result with their corresponding multiplicity. Without ALL,
duplicates are eliminated (as with DISTINCT in SELECT).

With SELECT commands, all options described earlier for selecting columns, setting sort order,
etc., are permitted. With unionoptions you can also specify how the final result is to be sorted (ORDER
BY) and reduced (LIMIT).

SET @variable1 = expression1, @variable2 = expression2 …

MySQL permits the management of one’s own user variables. These variables are indicated by the @
symbol before the name. These variables are managed separately for each client connection, so that
no naming conflicts can arise among clients. The content of such variables is lost at the end of the
connection.

Instead of SET, one may also use SELECT for the assignment of user variables. The syntax is
SELECT @variable:=expression (note that := must be used instead of =).

SET [options] [@@]systemvariable = expression

If the variable name has either no @ prefixed or two of them (@@), then SET is setting system variables.

options : MySQL distinguishes two levels of validity among system variables: GLOBAL (valid for
the entire MySQL server) and SESSION (valid only for the current connection). The default set-
ting is SESSION.

Instead of the options GLOBAL and SESSION you can prefix global. or session. to the variable
names. Thus SET GLOBAL name = … is equivalent to SET global.name = ….

Variables at the global level can be changed only by users with the Super privilege. Global changes
are valid only for new connections, not those already in existence.

SET [OPTION] option=value

SET can also be used to modify certain MySQL options as well as the password. Although the syntax
looks the same as that for variable assignment, most of the options described here cannot be evalu-
ated with SHOW VARIABLES. However, SELECT @@name works in most cases.

For example, with

SET SQL_LOW_PRIORITY_UPDATES = 0 / 1

it is possible to determine the order in which MySQL executes queries and change commands. The
default behavior (1) gives priority to change commands. (This has the effect that a lengthy SELECT
command will not block change commands, which are usually executed quickly.) With the setting 0,
on the other hand, changes are executed only when no SELECT command is waiting to be executed.

Important SET Options
Here are the most important SET syntax variants, presented in alphabetical order:

SET AUTOCOMMIT = 0 or SET AUTOCOMMIT = 1 switches the autocommit mode for transac-
tions off or on. Autocommit mode holds only for transaction-capable tables (see Chapter 10).

SET CHARACTER SET ‘csname’ assigns the character set csname to the two session variables
character_set_client and character_set_result and to the session variable character_set_connection
the value of character_set_database. SET CHARACTER SET DEFAULT resets the three variables to
their default settings. A description of character_set_xxx variables appears in Chapter 10.

SET FOREIGN_KEY_CHECKS = 0 or 1 deactivates or activates the checking of foreign key con-
straints (see also Chapter 8).

If you use replication, you can temporarily interrupt binary logging on the master system with
SET SQL_LOG_BIN =0 in order to make manual changes that should not be replicated. SET
SQL_LOG_BIN=1 resumes logging.

SET NAMES ‘csname’ is a variant of SET CHARACTER SET. The difference is that the character
set csname is assigned to all three session variables character_set_client, character_set_result,
and character_set_connection.

SET PASSWORD offers a convenient way of changing one’s own password, sparing the compar-
atively difficult manipulation of the access tables in the mysql database:

SET PASSWORD = PASSWORD('some password')

If you have sufficient privileges, you can also set another user’s password with SET.

SET PASSWORD FOR username@hostname = PASSWORD('newPassword')

SET SQL_QUERY_CACHE = 0|1|2|ON|OFF|DEMAND sets the mode of the query cache (see
Chapter 14).

SET TRANSACTION ISOLATION LEVEL sets the isolation level for transactions. The setting
holds for transaction-capable tables. Here is the syntax:

SET [SESSION|GLOBAL] TRANSACTION ISOLATION LEVEL
READ UNCOMMITTED | READ COMMITTED |
REPEATABLE READ | SERIALIZABLE

SET SESSION changes the transaction degree for the current connection, and SET GLOBAL for
all future connections (but not the current one). If neither SESSION nor GLOBAL is specified,
then the setting is valid only for the coming transaction. (Note that SESSION and GLOBAL in
SET TRANSACTION have a somewhat different effect from that of SET [@@]systemvariable.)

The four isolation degrees are described in Chapter 10. With InnoDB tables, the default is
REPEATABLE READ. The isolation degree can also be read from the variable
@@[global.]tx_isolation.

Additional SET Options
The following list presents all the options that can be changed with SET:

SET BIG_TABLES = 0 | 1
SET CHARACTER SET character_set_name | DEFAULT
SET IDENTITY = #
SET INSERT_ID = #
SET LAST_INSERT_ID = #
SET LOW_PRIORITY_UPDATES = 0 | 1

SET MAX_JOIN_SIZE = value | DEFAULT
SET QUERY_CACHE_TYPE = 0 | 1 | 2
SET QUERY_CACHE_TYPE = OFF | ON | DEMAND
SET SQL_AUTO_IS_NULL = 0 | 1
SET SQL_BIG_SELECTS = 0 | 1
SET SQL_BUFFER_RESULT = 0 | 1
SET SQL_LOG_OFF = 0 | 1
SET SQL_LOG_UPDATE = 0 | 1
SET SQL_QUOTE_SHOW_CREATE = 0 | 1
SET SQL_SAFE_UPDATES = 0 | 1
SET SQL_SELECT_LIMIT = value | DEFAULT
SET TIMESTAMP = timestamp_value | DEFAULT

An explanation of these (mostly seldom used) setting options can be found in the MySQL
documentation in the description of the SET command: http://dev.mysql.com/doc/mysql/en/
set-option.html.

SHOW BINLOG EVENTS [IN logname] [FROM pos] [LIMIT offset, rows]

If this command is executed without options, then it returns the complete contents of the currently
active binary logging file. The options allow for the specification of other logging files or for limiting
the output. Note that this command can also be used to read the logging file of an external MySQL
server.

SHOW CHARACTER SET [LIKE pattern]

Since MySQL 4.1, SHOW CHARACTER SET returns a list of all available character sets and their
default sort orders.

SHOW COLLATION[LIKE pattern]

Since MySQL 4.1, SHOW COLLATION returns a list of all available sort orders.

SHOW COLUMN TYPES

In the future, SHOW COLUMN TYPES will return a list of all data types available for column defini-
tion in a table. (In the tested version 5.0.2 the resulting list was incomplete.)

SHOW [FULL] COLUMNS FROM tablename
[FROM databasename] [LIKE pattern]

SHOW COLUMNS returns a table with information on all columns of a table (field name, field type,
index, default value, etc.). With LIKE the list of columns can be filtered with a search pattern with
the wild cards _ and %. The optional key word FULL has the effect that the access privileges of the
current user are also displayed on the columns. The same information can be obtained with SHOW
FIELDS FROM tablename, EXPLAIN tablename, or DESCRIBE tablename, as well as with the exter-
nal program mysqlshow. More detailed information can be found in the virtual table
information_schema.columns (since MySQL 5.0).

SHOW CREATE DATABASE tablename

Since MySQL 4.1, SHOW CREATE DATABASE displays the SQL command with which the specified
database can be re-created.

SHOW CREATE FUNCTION/PROCEDURE name

SHOW CREATE FUNCTION/PROCEDURE displays since MySQL 5.0 the SQL command with which
the specified stored procedure can be re-created.

SHOW CREATE TABLE name

SHOW CREATE TABLE displays the SQL command with which the specified table or view can be
re-created.

In the result of the command, all object names are set between backward single quotes, for
example `tablename` or `columnname`. If you don’t want this, then execute SET
SQL_QUOTE_SHOW_CREATE=0 beforehand.

SHOW CREATE VIEW name

SHOW CREATE VIEW displays the SQL command with which the specified view can be re-created.
The command assumes the Create View privilege.

SHOW DATABASES [LIKE pattern]

SHOW DATABASES returns a list of all databases that the user can access. The list can be filtered
with a search pattern with the wild cards _ and %. The same information can also be obtained with
the external program mysqlshow.

For users possessing the Show Databases privilege, SHOW DATABASES returns a list of all data-
bases, including those to which the user does not have access.

SHOW [STORAGE] ENGINES

Since MySQL 4.1, SHOW ENGINES displays a list of all table drivers (MyISAM, InnoDB, etc.) includ-
ing information as to whether the driver is supported by the current MySQL version.

SHOW [COUNT(*)] ERRORS [LIMIT [offset,] count]

Since MySQL 4.1, SHOW ERRORS returns a list of errors that were triggered by the execution of the
most recent command. With LIMIT the result can be limited as with a SELECT command.

SHOW FIELDS

See SHOW COLUMNS.

SHOW FUNCTION STATUS [LIKE 'pattern']

This command returns since MySQL 5.0 a list of all functions (SPs). The list covers all databases.
Optionally, the list can be reduced to all functions whose names satisfy a search pattern (where the
SQL wild cards % and _ are allowed). A list of all procedures can be determined with SHOW
PROCEDURE STATUS.

SHOW GRANTS FOR user@host

SHOW GRANTS displays a list of all access privileges for a particular user. It is necessary that user
and host be specified exactly as these character strings are stored in the various mysql access tables.
Wild cards are not permitted.

SHOW INDEX FROM table

SHOW INDEX returns a table with information about all indexes of the given table.

SHOW INNODB STATUS

SHOW INNODB STATUS returns information about various internal workings of the InnoDB table
driver. The data can be used for speed optimization. More information can be found at http://
dev.mysql.com/doc/mysql/en/innodb-tuning.html.

SHOW KEYS

See SHOW INDEX.

SHOW [BDB] LOGS

This command shows which BDB logging files are currently being used. (If you are not using BDB
tables, the command returns no result.)

SHOW MASTER LOGS

This command returns a list of all binary logging files. It can be executed only on the master com-
puter of a replication system.

SHOW MASTER STATUS

This command shows which logging file is the current one, as well as the current position in this file and
which databases are excepted from logging (configuration settings binlog-do-db and binlog-ignore-db).
This command can be used only on the master computer of a replication system.

SHOW PRIVILEGES

Since MySQL 4.1, this command returns a list of all available privileges with a brief description.

SHOW PROCEDURE STATUS [LIKE 'pattern']

This command returns, since MySQL 5.0, a list of all procedures (SPs). The list comprises SPs from
all databases. Optionally, the list can be reduced to all procedures whose names match the pattern
pattern (where the SQL wild cards % and _ are allowed). A list of all functions can be determined
with SHOW FUNCTION STATUS.

SHOW [FULL] PROCESSLIST

This command returns a list of all running threads (subprocesses) of the MySQL server. If the PROCESS
privilege has been granted, then all threads are shown. Otherwise, only the user’s threads are displayed.

The option FULL has the effect that for each thread, the complete text of the most recently exe-
cuted command is displayed. Without this option, only the first 100 characters are shown.

The process list can also be determined with the external command mysqladmin.

SHOW SLAVE HOSTS

This command returns a list of all slaves that replicate the master’s databases. The command can be
used only by the master computer of a replication system. It functions only for slaves for which the
host name is specified in the configuration file explicitly in the form report-host = hostname.

SHOW SLAVE STATUS

This command provides information on the state of replication, including the display of all infor-
mation about the file master.info. This command can be executed only on a slave computer in a
replication system.

SHOW STATUS

This command returns a list of various MySQL variables that provide information on the current
state of MySQL (for example, Connections, Open_files, Uptime). This same information can also be
determined with the external program mysqladmin. A description of all variables can be found in the
MySQL documentation under the command SHOW STATUS: http://dev.mysql.com/doc/mysql/en/
show-status.html.

SHOW TABLE STATUS [FROM database] [LIKE pattern]

SHOW TABLE STATUS returns information about all tables of the currently active or specified data-
base: table type, number of records, average record length, Create_time, Update_time, etc. The same
information can also be determined with the external program mysqlshow. With pattern the list of
tables can be limited; the SQL wild cards % and _ are permitted in pattern.

SHOW TABLE TYPES see also SHOW ENGINES

Since MySQL 4.1, SHOW TABLE TYPES returns a list of all available table types (MyISAM, HEAP,
InnoDB, etc.).

SHOW TABLES [FROM database] [LIKE pattern]

SHOW TABLES returns a list of all tables and Views of the current (or specified) database. Optionally,
the list of all tables can be reduced to those matching the search pattern pattern (where the SQL
wild cards % and _ are allowed). More information on the construction of individual tables can be
obtained with DESCRIBE TABLE and SHOW COLUMNS. The list of tables can also be retrieved with
the external program mysqlshow.

SHOW [options] VARIABLES [LIKE pattern]

This command returns a seemingly endless list of all system variables defined by MySQL together
with their values (e.g., ansi_mode, sort_buffer, tmpdir, wait_timeout, to name but a very few). To
limit the list, a pattern can be given (e.g., LIKE ‘char%’).

Many of these variables can be set at launch of MySQL or afterwards with SET. The list of vari-
ables can also be recovered with the external command mysqladmin.

options : Here you can specify GLOBAL or SESSION. GLOBAL has the effect that the default val-
ues valid at the global level are displayed. SESSION, on the other hand, results in the values
being displayed that are valid for the current connection. The default is SESSION.

An extensive description of the variables can be found in the MySQL documentation: http://
dev.mysql.com/doc/mysql/en/server-system-variables.html.

SHOW [COUNT(*)] WARNINGS [LIMIT [offset,] count]

Since MySQL 4.1, this command returns a list of all warnings that arose from the execution of the
most recent command.

SLAVE START/STOP [IO_THREAD | SQL_THREAD]

These commands start and stop replication (we leave it to the reader to determine which is which).
They can be executed only on the slave computer of a replication system.

By default, two threads are started for replication: the IO thread (copies the binary logging data
from the master to the slave) and the SQL thread (executes the logging file’s SQL command). With
the optional specification of IO_THREAD or SQL_THREAD, these two threads can be started or
stopped independently (which makes sense only for debugging).

START TRANSACTION

If you are working with transaction-capable tables (InnoDB), START TRANSACTION initiates a new
transaction. The command is ANSI-99 conforming, but it has been available only since MySQL 4.0.11.
In older versions, you must use the equivalent command BEGIN.

TRUNCATE TABLE tablename

TRUNCATE has the same functionality as DELETE without a WHERE condition; that is, the effect is
that all records in the table are deleted. This is accomplished by deleting the entire table and then
re-creating it. (This is considerably faster than deleting each record individually.)

TRUNCATE cannot be part of a transaction. TRUNCATE functions like COMMIT; that is, all
pending changes are first executed. TRUNCATE can also be undone with ROLLBACK.

UNION see also SELECT UNION

With UNION, you can assemble the results of several SELECT queries.

UNLOCK TABLES

UNLOCK TABLES removes all of the user’s LOCKs. This command holds for all databases (that is, it
doesn’t matter which database is the current one).

UPDATE [updateoptions] tablename SET col1=value1, col2=value2 ..
[WHERE condition]
[ORDER BY columns]
[LIMIT maxrecords]

UPDATE changes individual fields of the table records specified by WHERE. Those fields not speci-
fied by SET remain unchanged. In value one can refer to existing fields. For example, an UPDATE
command may be of the following form:

UPDATE products SET price = price + 5 WHERE productID=3

Warning: Without a WHERE condition, all data records in the table will be changed. (In the
above example, the prices of all products would be increased by 5.)

updateoptions : Here the options LOW PRIORITY and IGNORE may be given. The effect is the
same as with INSERT.

condition: This condition specifies which records are affected by the change. For the syntax of
condition see SELECT.

columns : With ORDER BY, you can sort the record list before making changes. This makes
sense only in combination with LIMIT, for example, to change the first or last ten records
(ordered according to some criterion). This possibility has existed since MySQL 4.0.

maxrecords : With LIMIT, the maximum number of records that may be changed is specified.

UPDATE [updateoptions] table1, table2, table3
SET table1.col1=table2.col2 ...
[WHERE condition] [ORDER BY columns] [LIMIT maxrecords]

Since MySQL 4.0, UPDATE commands can include more than one table. All tables included in the
query must be specified after UPDATE. The only tables that are changed are those whose fields were
specified by SET. The link between the tables must be set with WHERE conditions.

USE databasename

USE turns the specified database into the default database for the current connection to MySQL.
Until the end of the connection (or until the next USE command), all table names are automatically
assigned to the database databasename.

Function Reference
The functions described here can be used in SELECT queries as well as in other SQL commands.
We begin with a few examples. In our first example, we shall join two table columns with CONCAT
to create a new character string. In the second example, the function PASSWORD will be used to
store an encrypted password in a column. In the third example, the function DATE_FORMAT will
be summoned to help us format a date:

SELECT CONCAT(firstname, ' ', lastname) FROM users
Peter Smith
...

INSERT INTO logins (username, userpassword)
VALUES ('smith', PASSWORD('xxx'))
SELECT DATE_FORMAT(a_date, '%Y %M %e')
FROM exceptions.test_date

2005 December 7

■Tip This section aims to provide only a compact overview of the functions available. Extensive information on
these functions can be found in the MySQL documentation. Some of these functions have been introduced at vari-
ous places in this book by way of example. See the Index for page numbers.

Arithmetic Functions

Arithmetic Functions

ABS(x) Calculates the absolute value (nonnegative number).

ACOS(x), ASIN(x) Calculates the arcsin and arccos.

ATAN(x), ATAN2(x, y) Calculates the arctangent.

CEILING(x) Rounds up to the least integer greater than or equal to x.

COS(x) Calculates the cosine; x is given in radians.

COT(x) Calculates the cotangent.

DEGREES(x) Converts radians to degrees (multiplication by 180/pi).

EXP(x) Returns ex.

FLOOR(x) Rounds down to the greatest integer less than or equal to x.

LOG(x) Returns the natural logarithm (i.e., to base e).

LOG10(x)& Returns the logarithm to base 10.

MOD(x, y) Returns the mod function, equivalent to x % y.

PI() Returns 3.1415927.

POW(x, y) Returns xy.

POWER(x, y) Equivalent to POW(x, y).

RADIANS(x) Converts degrees into radians (multiplication by Pi/180).

RAND() Returns a random number between 0.0 and 1.0.

RAND(n) Returns a reproducible (thus not quite random) number.

ROUND(x) Rounds to the nearest integer.

ROUND(x, y) Rounds to y decimal places.

SIGN(x) Returns -1, 0, or 1 depending on the sign of x.

Arithmetic Functions

SIN(x) Calculates the sine.

SQRT(x) Calculates the square root.

TAN(x) Calculates the tangent.

TRUNCATE(x) Removes digits after the decimal point.

TRUNCATE(x, y) Retains y digits after the decimal point (thus TRUNCATE(1.236439, 2)
returns 1.23).

In general, all functions return NULL if provided with invalid parameters (e.g., SQRT(-1)).

Comparison Functions, Tests, Branching

Comparison Functions

COALESCE(x, y, z, …) Returns the first parameter that is not NULL.

GREATEST(x, y, z, …) Returns the greatest value or greatest character string.

IF(expr, val1, val2) Returns val1 if expr is true; otherwise, val2.

IFNULL(expr1, expr2) Returns expr2 if expr1 is NULL; otherwise, expr1.

INTERVAL(x, n1, n2, …) Returns 0 if x<n1; 1 if x< n2, etc.; all parameters must be integers, and
n1 < n2 < … must hold.

ISNULL(x) Returns 1 or 0, according to whether x IS NULL holds.

LEAST(x, y, z, …) Returns the smallest value or smallest character string.

STRCMP(s1, s2) Returns 0 if s1=s2 in sort order, -1 if s1<s2, 1 if s1>s2. Since MySQL 4.0
the function takes into account the valid character set. By default the
function no longer distinguished uppercase and lowercase (which is dif-
ferent from MySQL 3.32).

Tests, Branching

IF(expr, result1, result2) Returns result1 if expr is true; otherwise, result2.

CASE expr Returns result1 if expr=val1, returns result2 if expr=val2.

WHEN val1 THEN result1 If no condition is satisfied, then the result is resultn.
WHEN val2 THEN result2
ELSE resultn.

CASE Returns result1 if condition cond1 is true, etc.
WHEN cond1 THEN result1
WHEN cond2 THEN result2
ELSE resultn
END

Type Conversion (Cast)

Type Conversion

CAST(x AS type) Changes x into the specified type. CAST works with the following types:
BINARY, CHAR, DATE, DATETIME, SIGNED [INTEGER], TIME, and
UNSIGNED [INTEGER].

CONVERT(x, type) Equivalent to CAST(x AS type).

CONVERT(s USING cs) Represents the string s in the character set cs (since MySQL 4.1).

String Processing
Most character string functions can also be used for processing binary data. Since MySQL 4.1 (with
Unicode support), the position and length specification functions such as LEFT and MID apply to
characters, not bytes. MID(column, 3, 1) thus returns the third character, regardless of the character
set that is defined for column.

Processing Character Strings

CHAR_LENGTH(s) Returns the number of characters in s; CHAR_LENGTH works also for
multibyte character sets (e.g., Unicode).

CONCAT(s1, s2, s3, …) Concatenates the strings.

CONCAT_WS(x, s1, s2,…) Functions like CONCAT, except that x is inserted between each string;
CONCAT_WS(‘, ‘, ‘a’, ‘b’, ‘c’) returns ‘a, b, c’.

ELT(n, s1, s2, …) Returns the nth string; ELT(2, ‘a’, ‘b’, ‘c’) returns ‘b’.

EXPORT_SET(x, s1, s2) Creates a string from s1 and s2 based on the bit coding of x; x is inter-
preted as a 64-bit integer.

FIELD(s, s1, s2, …) Compares s with strings s1, s2 and returns the index of the first match-
ing string; FIELD(‘b’, ‘a’, ‘b’, ‘c’) returns 2.

FIND_IN_SET(s1, s2) Searches for s1 in s2; s2 contains a comma-separated list of strings;
FIND_IN_SET(‘b’, ‘a,b,c’) returns 2.

INSERT(s1, pos, 0, s2) Inserts s2 into position pos in s1; INSERT(‘ABCDEF’, 3, 0, ‘abc’) returns
‘ABabcDEF’.

INSERT(s1, pos, len, s2) Inserts s2 at position pos in s1 and replaces len characters of s2 with the
new characters; INSERT(‘ABCDEF’, 3, 2, ‘abc’) returns ‘ABabcEF’.

INSTR(s, sub) Returns the position of sub in s; INSTR(‘abcde’, ‘bc’) returns 2.

LCASE(s) Changes uppercase characters to lowercase.

LEFT(s, n) Returns the first n characters of s.

LENGTH(s) Returns the number of bytes necessary to store the string s; if multibyte
character sets are used (e.g., Unicode), then CHAR_LENGTH must be
used to determine the number of characters.

LOCATE(sub, s) Returns the position of sub in s; LOCATE(‘bc’, ‘abcde’) returns 2.

LOCATE(sub, s, n) As above, but the search for sub begins only at the nth character of s.

LOWER(s) Transforms uppercase characters to lowercase.

LPAD(s, len, fill) Inserts the fill character fill into s, so that s ends up with length len;
LPAD(‘ab’, 5, ‘*’) returns ‘***ab’.

LTRIM(s) Removes spaces at the beginning of s.

MAKE_SET(x, s1, s2 …) Forms a new string in which all strings sn appear for which in x the bit
n is set; MAKE_SET(1+2+8, ‘a’, b’, ‘c’, ‘d’) returns ‘a,b,d’.

MID(s, pos, len) Reads len characters from position pos from the string s; MID(‘abcde’, 3,
2) returns ‘cd’.

POSITION(sub IN s) Equivalent to LOCATE(sub, s).

QUOTE(s) Since MySQL 4.0, returns a string suitable for SQL commands; special
characters such as ‘, “, \ are prefixed with a backspace.

REPEAT(s, n) Joins s to itself n times; REPEAT(‘ab’, 3) returns ‘ababab’.

REPLACE(s, fnd, rpl) Replaces in s all fnd strings by rpl; REPLACE(‘abcde’, ‘b’, ‘xy’) returns
‘axycde’.

REVERSE(s) Reverses the string.

RIGHT(s, n) Returns the last n characters of s.

Processing Character Strings

RPAD(s, len, fill) Inserts the fill character fill at the end of s, so that s has length len;
RPAD(‘ab’, 5, ‘*’) returns ‘ab***’.

RTRIM(s) Removes spaces from the end of s.

SPACE(n) Returns n space characters.

SUBSTRING(s, pos) Returns the right part of s from position pos.

SUBSTRING(s, pos, len) As above, but only len characters (equivalent to MID(s, pos, len)).

SUBSTRING_INDEX(s, f, n) Searches for the nth appearance of f in s and returns the left part of
the string up to this position (exclusive); for negative n, the search
begins at the end of the string, and the right part of the string is
returned;
SUBSTRING_INDEX(‘abcabc’, ‘b’, 2) returns ‘abca’
SUBSTRING_INDEX(‘abcabc’, ‘b’, -2) returns ‘cabc’

TRIM(s) Removes spaces from the beginning and end of s.

TRIM(f FROM s) Removes the character f from the beginning and end of s.

UCASE(s) / UPPER(s) Transforms lowercase characters to uppercase.

Converting Numbers and Character Strings

ASCII(s) Returns the byte code of the first character of s: thus ASCII(‘A’) returns 65;
see also ORD.

BIN(x) Returns the binary code of x; BIN(12) returns ‘1010’.

CHAR(x, y, z, …) Returns the string formed from the code x, y, …; CHAR(65, 66) returns
‘AB’.

CHARSET(s) Since MySQL 4.1, returns the name of the character set in which s is
represented.

CONV(x, from, to) Transforms x from number base from to base to; CONV(25, 10, 16)
returns the hexadecimal ‘19’.

CONVERT(s USING cs) Since MySQL 4.1, represents the string s in the character set cs.

FORMAT(x, n) Formats x with commas for thousands separation and n decimal places;
FORMAT(12345.678, 2) returns ‘12,345.68’.

HEX(x) Returns the hexadecimal code for x; x can be a 64-bit integer or (since
MySQL 4.0) a character string; in the second case, each character is
transformed into an 8-bit hex code; HEX(‘abc’) returns ‘414243’.

INET_NTOA(n) Transforms n into an IP address with at least four groups;
INET_NTOA(1852797041) returns ‘110.111.112.113’ INET_ATON(ipadr)
transforms an IP address into the corresponding 32- or 64-bit integer;
INET_ATON(‘110.111.112.113’) returns 1852797041.

OCT(x) Returns the octal code of x.

ORD(s) Like ASCII(s), returns the code of the first character, but functions also
for multibyte character sets.

SOUNDEX(s) Returns a string that should match similar-sounding English words;
SOUNDEX(‘hat’) and SOUNDEX(‘head’) both return ‘H300’; extensive
information on the SOUNDEX algorithm can be found in the book SQL
for Smarties by Joe Celko.

Encryption of Character Strings and Password Management

AES_DECRYPT(crypt, key) Decrypts crypt with the AES algorithm (Rijndael) and uses
key for decryption.

AES_ENCRYPT(str, key) Encrypts str using key for encryption.

DES_ENCRYPT(str [, keyno | keystr]) Encrypts str using the DES algorithm; available since MySQL
4.0 and only when MySQL is compiled with SSL functions;
without the optional second parameter, the first key from the
DES key file is used for encryption; optionally, the number or
name of the key can be specified.

DES_DECRYPT(crypt [, keyno | keystr]) Decrypts crypt using the DES algorithm.

DECODE(crypt, pw) Decrypts crypt using the password pw.

ENCODE(str, pw) Encrypts str using pw as password; the result is a binary
object that can be decrypted with DECODE.

ENCRYPT(pw) Encrypts the password with the UNIX crypt function; if this
function is unavailable, returns ENCRYPT NULL.

PASSWORD(pw) Encrypts the password with the algorithm that was used for
storing passwords in the USER table; the result is a 16-
character string; note that since MySQL 4.1, PASSWORD uses
stronger encryption and returns a string of 45 characters.

OLD_PASSWORD(pw) Encrypts the password as for PASSWORD under
MySQL 3.23.n and 4.0.n; available since MySQL 4.1.

Calculation of Check Sums

CRC32(s) Since MySQL 4.1, computes a check (cyclic redundancy check value) for
the string s.

MD5(str) Computes the MD5 check sum for the string str.

SHA(str), SHA1(str) Since MySQL 4.0, computes a 160-bit check sum using the SHA1 algorithm
(defined in RFC 3174). SHA is considered more secure than MD5. The
result is returned as a string containing a 40-digit hexadecimal code; SHA
and SHA1 are synonyms.

Date and Time
Some of the following functions have been available only since MySQL 4.0 or 4.1.

Determining the Current Time

CURDATE() Returns the current date, e.g., ‘2005-12-31’.
Synonym: CURRENT_DATE()

CURTIME() Returns the current time as a string or an integer, depending on the con-
text, e.g., ‘23:59:59’ or 235959 (integer).
Synonym: CURRENT_TIME()

NOW() Returns the current time in the form ‘2005-12-31 23:59:59’.
Synonyms: CURRENT_TIMESTAMP(), LOCALTIME(), LOCALTIME-
STAMP(), SYSDATE()

UNIX_TIMESTAMP() Returns the current system time as a Unix timestamp (32-bit integer).

UTC_DATE() Returns the date in Coordinated Universal Time.

UTC_TIME() Returns the time in Coordinated Universal Time.

UTC_DATETIME() Returns the date and time in Coordinated Universal Time.

Calculating, Formatting, and Transformation Functions

ADDDATE(d, n) Adds n days to the starting time d.

ADDDATE(...) Adds a time interval to the starting time d (see below).
Synonym: DATE_ADD()

ADDTIME(d, t) Adds the time t (TIME) to the starting time d (DATETIME).

CONVERT_TZ(d, tz1, tz2) Converts the time d from the time zone tz1 into the time
zone tz2. The syntax for the given time zone depends on the
operating system. Under Windows the time difference from
UTC must be given (e.g., ‘+2:00’), while under Linux, after a
configuration, you may use the name of the time zone (e.g.,
‘America/New_York’; see Chapter 10).

DATE(d) Returns only the date portion of a DATETIME expression.
(That is, the function removes the time portion.)

DATEDIFF(d1, d2) Returns the number of days between d1 and d2. The time
portion is ignored in the calculation.

DATE_FORMAT(d, form) Formats d according to formatting string f; see below.

DAYNAME(date) Returns ‘Monday’, ‘Tuesday’, etc.

DAYOFMONTH(date) Returns the day of the month (1 to 31).

DAYOFWEEK(date) Returns the day of the week (1 = Sunday through 7 =
Saturday).

DAYOFYEAR(date) Returns the day in the year (1 to 366).

EXTRACT(i FROM date) Returns a number for the desired interval.

EXTRACT(YEAR FROM ‘2003-12-31’) Returns 2003.

FROM_DAYS(n) Returns the date n days after the year 0.

FROM_DAYS(3660) Returns ‘0010-01-08’.

FROM_UNIXTIME(t) Transforms the Unix timestamp number t into a date.

FROM_UNIXTIME(0) Returns ‘1970-01-01 01:00:00’.

FROM_UNIXTIME(t, f) As above, but with formatting as in DATE_FORMAT.

GET_FORMAT(…) Returns predefined formatting code for DATE_FORMAT
(see the table further below).

HOUR(time) Returns the hour (0 to 23).

LAST_DAY(d) Returns the last day of the month specified by the date d.
LAST_DAY(‘2005-02-01’) returns ‘2005-02-28’.

MAKEDATE(y, dayofyear) Creates a DATE expression from the input of year and day.

MAKETIME(h, m, s) Creates a TIME expression from the input for hours, min-
utes, and seconds.

MICROSECOND(d) Returns the number of microseconds (0 to 999999).

MINUTE(time) Returns the minute (0 to 59).

MONTH(date) Returns the month (1 to 12).

MONTHNAME(date) Returns the name of the month (‘January’, etc.).

PERIOD_ADD(s, n) Adds n months to the start date, which must be specified in
the form ‘YYYYMM’ (e.g., ‘200512’ for December 2005).

PERIOD_DIFF(s, e) Returns the number of months between the start and end
dates. Both times must be given in the form ‘YYYYMM’.

QUARTER(date) Returns the quarter (1 to 4).

Continued

Calculating, Formatting, and Transformation Functions (Continued)

SECOND(time) Returns the second (0 to 59).

SEC_TO_TIME(n) Returns the time n seconds after midnight.

SEC_TO_TIME(3603) Returns ‘01:00:03’.

STR_TO_DATE(s, form) Interprets the string s according to the formatting code in form.
STR_TO_DATE is the inverse function of DATE_FORMAT.

SUBDATE(d, n) Subtracts n days from the starting time d.

SUBDATE(d,) Subtracts a time interval from the starting time d (see below).
Synonym: DATE_ADD()

SUBTIME(d, t) Subtracts the time t (TIME) from the starting time d (DATETIME).

TIMESTAMP(s) Returns the starting time given in the string as a TIMESTAMP value.
TIMESTAMP(‘2005-12-31’) returns ‘2005-12-31 00:00:00’.

TIMESTAMP(s, time) Returns s + time as a TIMESTAMP value.

TIMESTAMPADD(i, n, s) Adds n times the interval i (e.g., MONTH) to the starting time s.

TIMESTAMPDIFF(i, s, e) Returns the number of intervals i between the start time s and the end
time e. TIMESTAMPDIFF(HOUR, ‘2005-12-31’, ‘2006-01-01’) returns 24.

TIME_FORMAT(time, f) Like DATE_FORMAT, but for times only. TIME_TO_SEC(time) returns
the number of seconds since midnight.

TO_DAYS(date) Returns the number of days since the year 0.

UNIX_TIMESTAMP(d) Returns the timestamp number for the given date.

WEEK(date) Returns the week number (1 for the week beginning with the first
Sunday in the year).

WEEK(date, mode) Returns the week number (0 to 53 or 1 to 53). The parameter mode
determines the first day of the week and how a week is defined. For
example, mode=0 means that weeks begin on Sunday and that 1 is the
first week in the new year. If mode is not specified, the server default
setting holds (default_week_format in my.cnf/my.ini). A description
of modes can be found at http://dev.mysql.com/doc/mysql/en/
date-and-time-functions.html.

WEEKDAY(date) Returns the day of the week (0 = Monday, 1 = Tuesday, etc.).

WEEKOFYEAR(date) Returns the calendar week (1 to 53).

YEAR(date) Returns the year.

YEARWEEK(date, mode) Returns an integer or string, depending on context, that consists of the
year number and week number. mode is set as in WEEK. YEAR-
WEEK(‘2005-12-31’) returns 200552.

The functions for dates and times generally assume that the initial data are valid. Do not expect
a sensible return value for input such as ‘2005-02-31’.

With all functions that return a time or a date (or both), the format of the result depends on the
context. Normally, the result is a character string (e.g., ‘2005-12-31 23:59:59’). However, if the func-
tion is used within a numeric calculation, for example NOW()+0, then the result is an integer of the
form 20051231235959.

Intervals with ADDDATE, SUBDATE, EXTRACT, TIMESTAMPADD, etc.
ADDDATE (date, INTERVAL n i) adds n times the interval i to the starting date date. The permitted
interval names are collected in the table following some examples. The third example shows how
intelligently the function deals with ends of months (31.12 or 28.2):

ADDDATE(‘2005-12-31’, INTERVAL 3 DAY) returns ‘2006-01-03’.

ADDDATE(‘2005-12-31’, INTERVAL ‘3:30’ HOUR_MINUTE) returns ‘2005-12-31 03:30:00’.

ADDDATE (‘2005-12-31’, INTERVAL 2 month) returns ‘2006-02-28’.

SUBDATE is like ADDDATE, but it subtracts the given interval n times.

EXTRACT extracts the given interval from the time: EXTRACT(MONTH FROM ‘2005-12-31’)
returns 12.

TIMESTAMPADD is like ADDDATE, but it uses a different syntax for specifying the interval:
TIMESTAMPADD(DAY, 5, ‘2005-12-31’) returns ‘2006-01-05’.

TIMESTAMPDIFF returns the difference between two times as a multiple of the given interval:
TIMESTAMPDIFF(DAY, ‘2005-12-31’, ‘2006-02-15’) returns 46.

Intervals for ADDDATE, SUBDATE, EXTRACT, TIMESTAMPADD

MICROSECOND n

SECOND n

MINUTE n

HOUR n

DAY n

MONTH n

YEAR n

SECOND_MICROSECOND ‘ss.mmmmmm’

MINUTE_SECOND ‘mm:ss’

HOUR_MINUTE ‘hh:mm’

HOUR_SECOND ‘hh:mm:ss’

DAY_HOUR ‘dd hh’

DAY_MINUTE ‘dd hh:mm’

DAY_SECOND ‘dd hh:mm:ss’

YEAR_MONTH ‘yy-mm’

Formatting Dates and Times
DATE_FORMAT(date, format) helps in representing dates and times in other formats than the usual
MySQL format. Two examples illustrate the syntax:

DATE_FORMAT(‘2003-12-31’, ‘%M %d %Y’) returns ‘December 31 2003’.

DATE_FORMAT(‘2003-12-31’, ‘%D of %M’) returns ‘31st of December’.

Names of days of the week, months, etc., are always given in English, regardless of the MySQL
language setting (language option).

STR_TO_DATE is the inverse function to DATE_FORMAT: SELECT STR_TO_DATE(‘December 31
2005’, ‘%M %d %Y’) returns ‘2005-12-31’.

Date Symbols in DATE_FORMAT, TIME_FORMAT, and FROM_UNIXTIME

%W day of week Monday to Sunday

%a day of week abbreviated Mon to Sun

%e day of month 1 to 31

%d day of month two-digit 01 to 31

%D day of month with ending 1st, 2nd, 3rd, 4th, …

%w day of week as number 0 (Sunday) to 6 (Saturday)

%j day in year, three-digit 001 to 366

%U week number, two-digit (Sunday) 00 to 52

%u week number, two-digit (Monday) 00 to 52

%M name of month January to December

%b name of month abbreviated Jan to Dec

%c month number 1 to i

%m month number, two-digit 01 to 12

%Y year, four-digit 2002, 2003, …

%y year, two-digit 00, 01, …

%% the symbol % %

A few remarks about the week number are in order: %U returns 0 for the days from before the
first Sunday in the year. From the first Sunday until the following Saturday, it returns 1, then 2, etc.
With %u you get the same thing, with the first Sunday replaced by the first Monday.

Time Symbols in DATE_FORMAT, TIME_FORMAT, and FROM_UNIXTIME

%f microseconds 000000 to 99999

%S or %s seconds, two-digit 00 to 59

%i minutes, two-digit 00 to 59

%k hours (24-hour clock) 0 to 23

%H hours, two-digit, 0 to 23 o’clock 00 to 23

%l hours (12-hour clock) 1 to 12

%h or %I hours, two-digit, to 12 o’clock 01 to 12

%T 24-hour clock 00:00:00 to 23:59:59

%r 12-hour clock 12:00:00 AM to 11:59:59 PM

%p AM or PM AM, PM

In order to avoid having to re-create frequently used formatting strings, since MySQL 4.1 you
can get help from the function GET_FORMAT.

SELECT DATE_FORMAT(NOW(), GET_FORMAT(DATE, 'EUR'))
31.12.2005

The following table summarizes the results of these functions and gives examples of the result-
ing formatting of dates and times.

GET_FORMAT Formatting Codes

GET_FORMAT(DATE, ‘USA’) ‘%m.%d.%Y’ 12.31.2005

GET_FORMAT(DATE, ‘EUR’) ‘%d.%m.%Y’ 31.12.2005

GET_FORMAT(DATE, ‘ISO’) ‘%Y-%m-%d’ 2005-12-31

GET_FORMAT(DATE, ‘JIS’) ‘%Y-%m-%d’ 2005-12-31

GET_FORMAT(DATE, ‘INTERNAL’) ‘%Y%m%d’ 20051231

GET_FORMAT(TIME, ‘USA’) ‘%h:%i:%s %p’ 11:59:59 PM

GET_FORMAT(TIME, ‘EUR’) ‘%H:%i:%s’ 23:59:59

GET_FORMAT(TIME, ‘ISO’) ‘%H:%i:%s’ 23:59:59

GET_FORMAT(TIME, ‘JIS’) ‘%H:%i:%s’ 23:59:59

GET_FORMAT(TIME, ‘INTERNAL’) ‘%H%i%s’ 235959

GET_FORMAT(DATETIME, ‘USA’) ‘%h:%i:%s %p %h:%i:%s %p’

GET_FORMAT(DATETIME, ‘EUR’) ‘%H:%i:%s %H:%i:%s’

GET_FORMAT(DATETIME, ‘ISO’) ‘%H:%i:%s %H:%i:%s’

GET_FORMAT(DATETIME, ‘JIS’) ‘%H:%i:%s %H:%i:%s’

GET_FORMAT(DATETIME, ‘INTERNAL’) ‘%H%i%s%H%i%s’

GROUP BY Functions
The following functions can be used in SELECT queries (frequently in combination with GROUP BY):

USE mylibrary
SELECT catName, COUNT(titleID) FROM titles, categories
WHERE titles.catID=categories.catID
GROUP BY catName
ORDER BY catName
catName COUNT(titleID)
Children's books 3
Computer books 5
Databases 2
...

Since MySQL 4.1, the desired sort order can be specified in some aggregate functions, as in
MAX(column COLLATE collname).

Aggregate Functions

AVG(expr) Computes the average of expr.

BIT_AND(expr) Performs a bitwise AND of expr.

BIT_OR(expr) Performs a bitwise OR of expr.

BIT_XOR(expr) Performs a bitwise XOR of expr.

COUNT(expr) Returns the number of expressions expr.

COUNT(DISTINCT expr) Returns the number of different expr expressions.

GROUP_CONCAT(expr) Concatenates the strings (since MySQL 4.1). Here is the complete syntax for ex
[DISTINCT] expr1, expr2 … [ORDER BY column [DESC]] [SEPARATOR ‘…’].
ORDER BY sorts the strings before concatenating them. SEPARATOR specifies
the separator character (by default a comma). Examples of GROUP_CONCAT
can be found in Chapter 9.

Continue

Aggregate Functions (Continued)

MAX(expr) Returns the maximum of expr.

MIN(expr) Returns the minimum of expr.

STD(expr) Computes the standard deviation of expr.

STDDEV(expr) Like STD(expr).

SUM(expr) Computes the sum of expr.

VARIANCE(expr) Computes the variance of expr (since MySQL 4.1).

Additional Functions
Miscellaneous

BIT_COUNT(x) Returns the number of set bits.

COALESCE(list) Returns the first element of the list that is not NULL.

LOAD_FILE(filename) Loads a file from the local file system.

Administrative Functions

BENCHMARK(n, expr) Executes expr a total of n times and measures the time elapsed.

CONNECTION_ID() Returns the ID number of the current database connection.

CURRENT_USER() Returns the name of the current user in the form in which authentica-
tion takes place (that is, with the IP number instead of the host name,
e.g., “radha@127.0.0.1”).

DATABASE() Returns the name of the current database.

FOUND_ROWS() Returns since MySQL 4.0 the number of records found by a SELECT
LIMIT query if in the SELECT command, the option
SQL_CALC_FOUND_ROWS was used.

GET_LOCK(name, time) Defines a lock with the name name for the time time (in seconds); see
also Chapter 10.

IDENTITY() Since MySQL 4.0 equivalent to LAST_INSERT_ID().

IS_FREE_LOCK(name) Tests whether the lock name is available; returns 0 if the lock is cur-
rently in use (thus before GET_LOCK was executed), otherwise, 1.

LAST_INSERT_ID() Returns the AUTO_INCREMENT number most recently generated
within the current connection to the database.

RELEASE_LOCK(name) Releases the lock name.

SESSION_USER() Equivalent to USER().

SYSTEM_USER() Equivalent to USER().

USER() Returns the name of the current user and associated host name (e.g.,
“root@localhost”).

VERSION() Returns the MySQL version number as a string.

GIS Data Types and Functions
The GIS data types and functions described here have been available since MySQL 4.1. The GIS data
types collected in the following table can be used in the declaration of a table column (such as INT
or VARCHAR). At present, these data types can be used only in MyISAM tables, and not in InnoDB
tables. Optionally, geometric columns can be equipped with a SPATIAL INDEX, which is independ-
ent of the GIS data type used.

GIS Data Types

GEOMETRY Can accept any of the following data types.

POINT Stores a single point. Example: POINT(10 10).

MULTIPOINT Stores a list of points. Example: MULTIPOINT(10 10, 0 20, -3 2).

LINESTRING Stores a line segment. Example: LINESTRING(0 0, 1 1, 3 3).

MULTILINESTRING Stores several line strings. Example: MULTILINESTRING((0 0, 5 5),
(10 10, 20 20, 40 20), (10 10, 2 0)).

POLYGON Stores a closed polygon, which is permitted to have holes. Example:
POLYGON((1 1, 9 1, 9 9, 1 9, 1 1), (3 3, 3 6, 6 6, 6 3, 3 3)).

MULTIPOLYGON Stores several polygons. Example: MULTIPOLYGON(((0 0, 5 0, 5 5,
0 5, 0 0)), ((10, 10, 30 30, 30 10, 10 10))).

GEOMETRYCOLLECTION Stores a list of arbitrary geometric objects. Example: GEOME-
TRYCOLLECTION(POINT(100 100), POINT(10 10), LINESTRING
(1 1, 100 1, 100 100)).

Conversion Functions

ASTEXT(geom) Returns a geometric object as well-known text.

ASBINARY(geom) Returns a geometric object as well-known binary.

GEOMFROMTEXT(txt [, srid]) Creates the MySQL-internal geometric format out of a well-known
text (WKT) string. Optionally, an identifier for the coordinate system
can be given, which is stored by MySQL but otherwise ignored.

GEOMFROMWKB(bindata) Creates the MySQL-internal geometry format from binary data in
WKB format.

General Geometric Functions (for All GIS Data Types)

DIMENSION(g) Returns the dimension of the object. Possible results are:
1 for empty objects,
0 for points (length = 0, area = 0),
1 for lines (length > 0, area = 0),
2 for polygons, etc. (length > 0, area > 0).

ENVELOPE(g) Returns the bounding box of the geometric object (see below). The result
has the data type POLYGON.

GEOMETRYTYPE(g) Returns the type of the geometric object as a string: (POINT, LINESTRING,
POLYGON, …).

SRID(g) Returns the identifier of the coordinate system. (MySQL stores a coordi-
nate system identifier for all geometric objects, but it does evaluate this
information.)

POINT Functions

X(pt) Returns the X coordinate.

Y(pt) Returns the Y coordinate.

LINESTRING Functions (in Part Also MULTILINESTRING)

GLENGTH(ls) Returns the length of the line as a floating-point number.

ISCLOSED(ls) Returns 1 if the starting point is equal to the endpoint, otherwise 0.

NUMPOINTS(ls) Returns the number of points that the line consists of.

STARTPOINT(ls) Returns the first point (POINT object).

ENDPOINT(ls) Returns the last point.

POINTN(ls, n) Returns the nth point.

POLYGON Functions (in Part Also MULTIPOLYGON)

AREA(p) Returns the area of the polygon as a floating-point number.

EXTERIORRING(p) Returns the exterior ring of the polygon as a LINESTRING object.

INTERIORRINGN(p, n) Returns the interior ring of the polygon as a LINESTRING object.

NUMINTERIORRINGS(p) Returns the number of interior rings (holes).

GEOMETRYCOLLECTION Functions

GEOMETRYN(gc, n) Returns the geometric object at location n.

NUMGEOMETRIES(gc) Returns the number of objects in a collection.

The OpenGIS specification provides for the following analysis functions in two variants. The
fast variant takes into account only the bounding box of the geometric object (MBRname, where
MBR stands for minimum bounding rectangle). The precise variant, on the other hand, calculates
with the complete geometric data (name). MySQL formally recognizes both variants, but internally
they are identical, and only the bounding box is considered.

Analysis Functions for GIS Data Types

[MBR]CONTAINS(g1, g2) Returns TRUE, if g2 is completely contained in g1.

[MBR]WITHIN(g1, g2) Returns TRUE, if g1 is completely contained within g2.
(CONTAINS(a, b) is equivalent to WITHIN(b, a).)

[MBR]EQUAL(g1, g2) Returns TRUE if g1 and g2 are equal.

[MBR]INTERSECTS(g1, g2) Returns TRUE if g1 and g2 intersect.

[MBR]OVERLAPS(g1, g2) Returns TRUE if g1 and g2 overlap.

[MBR]TOUCHES(g1, g2) Returns TRUE if g1 and g2 touch each other.

[MBR]DISJOINT(g1, g2) Returns TRUE if g1 and g2 neither overlap nor touch.

Language Elements for
Stored Procedures and Triggers
You can place almost any SQL command or function described in this chapter in the code of a
stored procedure or trigger. Furthermore, MySQL provides some additional language elements with
which you can declare system variables and cursors, form loops and queries, and so on. The syntax
of these language elements is summarized in the following tables.

Summary of Commands, Loops, and Queries

[blockname:] BEGIN BEGIN introduces a block of commands; END ends
DECLARE variables, cursors, the block. First, variables, cursors, etc., can be
conditions, handlers etc.; commands …; declared within a block, followed by the SQL com-

END [blockname]; mands and additional language elements.

LEAVE blockname; If the block has a name (blockname), then it can be
exited early with LEAVE. Code execution is contin-
ued after END blockname.

RETURN result; With functions, a result can be returned with
RETURN. At the same time, code execution ends.

Queries

IF condition1 THEN IF/END IF creates a simple branch. Arbitrarily many ELSE-IF
commands ...; clauses are allowed, but only one terminating ELSE branch.

[ELSE IF condition2 THEN
commands ...;]

[ELSE
commands ...;]

END IF;

CASE expression CASE/END CASE helps to formulate case decisions with several
WHEN value1 THEN variants in a more understandable manner. Arbitrarily many

commands ...; WHEN branches are allowed. (Each CASE can be formulated
[ELSE equivalently with IF/END IF.)

commands ...;]
END CASE;

Loops

[loopname:] REPEAT REPEAT loops are executed until the condition is satisfied
commands ...; (at least once).

UNTIL condition
END REPEAT [loopname];

[loopname:] WHILE condition DO WHILE loops are executed while the condition is satisfied.
commands ...; If the condition is FALSE (0) before the first execution of the

END WHILE [lpname]; loop, the loop is not executed at all.

loopname: LOOP LOOP/END LOOP creates an infinite loop. It must be ended
commands ...; with BREAK.

END LOOP loopname;

LEAVE loopname; Ends a loop prematurely.

ITERATE loopname; Repeats the commands of the loop body one more time.

The following DECLARE instructions must be executed at the beginning of a code block and in
the order given (that is, first variable declaration, then cursors, then conditions and handlers).

Variables, Cursors , Conditions, Handlers (DECLARE)

DECLARE varname1, Declares the local variables varname1, varname2, etc. with a par-
varname2, … datatype ticular data type (e.g., INT). Optionally, a default value can be
[DEFAULT value]; assigned. The variables can be used only within the block in which

they are defined. Their names cannot coincide with those of a
table or column.

DECLARE cursorname Declares a cursor for step-by-step processing of the results of a
CURSOR SELECT command.
FOR select-command;

DECLARE name Names one or more error conditions. There are several possibilities
CONDITION for specifying the error conditions:
FOR condition1, c2, c3 …; SQLSTATE ‘code’

n (MySQL error number)
SQLWARNING
NOT FOUND
SQLEXCEPTION

DECLARE CONTINUE | EXIT Declares a handler for error-handling. With CONTINUE the code is
HANDLER simply continued, while with EXIT the current code block is exited.
FOR condition1, c2, c3 … First, any command is executed. In addition to the above variants,
command; for the error conditions a CONDITION is allowed.

The following table shows the application of a cursor.

Cursor Application

DECLARE done INT DEFAULT 0; Defines the variable for the handler.

DECLARE var1, var2 … datatype; Declares the variables for the SELECT command.

DECLARE mycursor CURSOR Declares the cursor.
FOR select command;

DECLARE CONTINUE HANDLER Declares a handler that becomes active after the last
FOR NOT FOUND SET done=1; record is read.

OPEN mycursor; Activates the cursor.

myloop: LOOP

FETCH mycursor INTO var1, var2 …;
IF done=1 THEN LEAVE myloop; END IF;

END LOOP myloop; Within the loop, reads the records of the SELECT
command into the variables var1, var2, etc. If there
are no further records, the handler assigns the value
1, and the loop is ended.

CLOSE mycursor; Closes the cursor.

