
API Reference

This chapter contains a reference to the APIs (application programming interfaces) that were
introduced in this book for the programming languages PHP, Perl, Java, and C.

PHP API (mysql Interface)
Since PHP 5 two interfaces have been available for interacting with MySQL: the mysql functions and
the mysqli classes and methods. This section gives a compact overview of the mysql functions and
their parameters for access to MySQL databases. In the next section follows a reference to the
mysqli interface.

First a few formal remarks to the following explanation of syntax:

• Square brackets in the left column indicate optional parameters.

• For all functions for which there is an enumeration over an index n, this index is in the range
0 to nmax -1.

• Examples of the application of these functions can be found particularly in Chapters 3 and
15. Further references can be found in the Index.

Establishing a Connection

$id = mysql_connect($host, $user, $pw); Establishes a connection.

$id = mysql_connect($host, $user, $pw, As above, except that new_link specifies whether a new
$new_link, $client_flags); connection should be made if a similar connection

already exists (default false); client_flags specifies
whether particular connection properties should be
used (e.g., MYSQL_CLIENT_COMPRESS); these two
optional parameters have been available only since
PHP 4.3.

$id = mysql_pconnect($host, $user, $pw Establishes a persistent connection or attempts to reuse
[, $new_link [, $client_flags]]); a still open connection of another PHP page.

mysql_change_user($newuser, $passw); Changes the user name for the connection.

mysql_select_db($dbname); Determines the default database.

mysql_close([$id]); Closes the connection.

Generally, the specification id can be omitted as long as there is only one connection to MySQL
and thus no possibility of confusion.

■ ■ ■

Administration

$result = mysql_list_dbs([$id]); Determines a list of all known databases; the eval-
uation is like that of SELECT queries.

$result = mysql_list_tables($dbname [,$id]); Determines a list of all tables of the database; the
evaluation is like that of SELECT queries.

$result = mysql_list_fields($dbn, $tbln [,$id]); Determines a list of all fields of the table; the evalu-
ation is like that of SELECT queries.

mysql_create_db($dbname [,$id]); Creates a new database.

mysql_drop_db($dbname [,$id]); Deletes a database.

Error Evaluation

$n = mysql_errno([$id]); Determines the number of the most recent error.

$txt = mysql_error([$id]); Determines the error message.

Information Functions

$txt = mysql_get_client_info([$id]); Returns a character string with the version number of the
client library.

$txt = mysql_get_host_info([$id]); Returns a character string that describes the connection
with the server (including host name, e.g., “localhost via
TCP/IP”).

$n = mysql_get_proto_info([$id]); Returns an integer with the number of the communication
protocol in use (e.g., 10).

$txt = mysql_get_server_info([$id]); Returns a character string with the version number of the
server (e.g., “5.0.2-alpha-standard”).

$n = mysql_thread_id([$id]); Returns an integer with the thread number of the given
connection.

$txt = mysql_stat([$id]); Returns a character string with a brief status report on the
server (e.g., “Uptime: 24763 Threads: 1 Questions: 65 …”).

Executing SQL Commands

[$result =] mysql_query($sql [, $id]) Executes an SQL command for the default database; if
it is a SELECT command, the found records can be
evaluated with $result.

[$result =] mysql_db_query($db, $sql Executes a command for the database db (which
[, $id]); becomes the default database for all further queries).

$result = mysql_unbuffered_query($sql Functions in principle like mysql_query, but is
[, $id]); designed only for SELECT queries; the difference

between this and mysql_query is that found records
remain at first on the server and are transferred only
as needed; the number of found records can be
determined only by running through all of them;
mysql_num_rows cannot be used.

$sql = addslashes($s); Replaces 0-bytes and the characters ‘, “, and \ in $s
with the strings \0, \', \", and \\.

$sql = mysql_escape_string($s); Functions like addslashes, but also replaces carriage
return, line feed, and Ctrl+Z with the strings \n, \r,
and \z.

$sql = mysql_real_escape_string($s [,$id]); Functions like mysql_escape_string, but also considers
the character set of the MySQL connection.

Output of SELECT Query Results

mysql_data_seek($result, $rownr); Determines the active data record within the result.

$row = mysql_fetch_array($result); Returns the next record of the result (or false);
access to individual fields takes place with row[n] or
row[‘fieldname’], where case sensitivity is enforced.

$row = mysql_fetch_assoc($result); Functions like mysql_fetch_array, except that field
access must be by column name; row[n] is not
permitted.

$row = mysql_fetch_row($result); Returns the next record of the result (or false);
access to individual fields is via row[n].

$row = mysql_fetch_object($result); Returns the next record of the result (or false);
access to individual fields is via row->fieldname.

$data = mysql_result($result, $rownr, $colnr); Returns the contents of the field in row rownr and
column colnr; this function is slower than the other
functions in this list and should therefore be used
only in particular cases (such as to read a single
value, e.g., SELECT COUNT(*)).

mysql_free_result($result); Frees the query result immediately (otherwise, not
until the end of the script).

All of the above functions except for mysql_treat_result() treat result as a value that enables
access to the list of data records from a SELECT query. Usually, all records are output one after the
other with mysql_fetch_array, mysql_fetch_row, or mysql_fetch_object, with each subsequent execu-
tion of the function setting the next record as the active one. The active record can also be set with
mysql_data_seek.

The three functions mysql_fetch_array, mysql_fetch_row, and mysql_fetch_object differ only in the
way in which individual fields of a record are accessed: row[‘fieldname’], row[n], or row->fieldname. Of
the three functions, mysql_fetch_row is the most efficient, but the difference in speed is negligible.

Metainformation on Query Results

$n = mysql_num_rows($result); Determines the number of result records (SELECT).

$n = mysql_num_fields($result); Determines the number of result columns (SELECT).

$n = mysql_affected_rows([$id]); Determines the number of records that were changed by the
last SQL command (INSERT, UPDATE, DELETE, CREATE, …,
SELECT).

$autoid = mysql_insert_id([$id]); Determines the AUTO_INCREMENT value generated by the last
INSERT command.

$txt = mysql_info([$id]); Returns status information on the last command, e.g., “Rows
matched: 65 Changed: 65 Warnings: 0”; mysql_info is designed
only for commands that usually affect large numbers of records
(INSERT INTO, UPDATE, ALTER TABLE, etc.).

Metainformation on the Fields (Columns) of Query Results

$fname = mysql_field_name($result, $n); Returns the field name of column n.

$tblname = mysql_field_table($result, $n); Returns the table name for column n.

$typename = mysql_field_type($result, $n); Returns the data type of column n (e.g., “TINYINT”).

$length = mysql_field_len($result, $n); Returns the maximum length of the column.

$lengths = mysql_fetch_length($result); Returns a field with length information for all fields
of the last-read data record (access with lengths[n]).

$flags = mysql_field_flags($result, $n); Returns the attribute properties of a column as a
character string (e.g., “not_null primary_key”); the
properties are separated by spaces; evaluation is
done most easily with explode.

$info = mysql_fetch_field($result, $n); Returns information on column n as an object; eval-
uation proceeds with info->name (see the list below);
note that info may contain, in part, properties other
than flags.

Attributes of mysql_field_flags

auto_increment Attribute AUTO_INCREMENT.

binary Attribute BINARY.

blob Data type BLOB, TINYBLOB, etc.

enum Data type ENUM.

multiple_key The field is part of a nonunique index.

not_null Attribute NOT NULL.

primary_key Attribute PRIMARY KEY.

timestamp Attribute TIMESTAMP.

unique_key Attribute UNIQUE.

unsigned Attribute UNSIGNED.

zerofill Attribute ZEROFILL.

Field Information for mysql_fetch_field

info->name column name (field name).

info->table name of the table from which the field
comes.

info->max_length maximum length of the field.

info->type name of the data type of the field (e.g.,
“TINYINT”).

info->numeric 1 or 0, depending on whether the field
contains numeric data.

info->blob, not_null, multiple_key, primary_key, 1 or 0; see list above for interpretation.
unique_key, unsigned, zerofill

PHP-API (mysqli Interface)
In addition to the mysql interface described in the previous section, since PHP 5 the new mysqli
interface has been available. Among its advantages are object-oriented programming, greater
functionality, and support for new MySQL features (e.g., prepared statements).

The mysqli interface offers three classes:

mysqli: Objects of this class manage the connection to the MySQL server.

mysqli_result: Objects of this class contain the results of SELECT queries.

mysqli_stmt: Objects of this class enable the definition and execution of prepared statements.

The following syntax tables describe the most important properties and methods of the three
classes. Here $mysqli is an object of the mysqli class, $result an object of the mysqli_result class, and
$stmt an object of the mysqli_stmt class.

The mysqli Class
Establishing a Connection

$mysqli = new mysqli(“servername”, Connection variant 1: The mysqli constructor creates the
“user”, “pw”, “dbname”); connection.

$mysqli = mysqli_init(); Connection variant 2: The mysqli object is created with
$mysqli->options(...); mysqli_init. Then you can set options, for example, in the
$mysqli->ssl_set(“key”, “cert”, “ca”, form $mysqli->options(MYSQLI_OPT_CONNECT_

“capath”, “cipher”); TIMEOUT, 10). The actual creation of the connection
$mysqli->real_connect(“servername”, finally takes place via real_connect, where the last three

“user”, “pw”, “dbname”, portno, parameters are optional. Allowable flags include
“socketfile”, flags); MYSQLI_CLIENT_COMPRESS and MYSQL_CLIENT_SSL.

$err = mysqli_connect_errno(); Tests whether an error has occurred during creation of
the connection. The return value 0 means that the
connection has succeeded.

mysqli — Executing SQL Commands

[$result =] $mysqli->query($sqlstring); Executes an SQL command. With queries (SELECT),
moreover, the entire result is transferred to the client and
returned as a mysqli_result object.

$mysqli->real_query($sqlstring); Executes an SQL command without transferring the
result.

$sql = “sqlcmd1;cmd2;cmd3”; Executes several SQL commands. The first SELECT result
$ok = $mysqli->multi_query($sql); can be determined at once with store_result. If there is
if($ok) more than one result, these must be activated with
do { next_result. This method returns 0 if there are no more
$result = $mysqli->store_result(); results or if an error occurred.
... process result
while($mysqli->next_result());

$stmt = $mysqli->prepare($sqlstring); Prepares a parameterized SQL command and returns a
mysqli_stmt object; the execution of the command and
the evaluation of the result take place via the mysqli_stmt
methods (see below).

mysqli — Important Methods

$mysqli->autocommit(0 / 1); Sets the autocommit mode.

$mysqli->close(); Closes the connection.

$mysqli->commit(); Ends a transaction.

$str = $mysqli->escape_string($str); Places a backslash in front of special characters in strings or
replaces them with SQL-conforming character
combinations.

$mysqli->rollback(); Aborts a transaction.

mysqli — Important Properties

$n = $mysqli->affected_rows; Returns the number of records that were altered by the most
recent SQL command (INSERT, UPDATE, DELETE, etc.).

$n = $mysqli->errno; Returns the number of the last-occurring error.

$str = $mysqli->error; Returns the most recent error message.

$str = $mysqli->info; Returns a string with information about the last-executed SQL
command (e.g., after an UPDATE command: Rows matched:
nnn Changed: nnn Warnings: nnn).

$n = $mysqli->insert_id; Determines the AUTO_INCREMENT value created by the last
INSERT command.

$n = $mysqli->warning_count; Returns the number of warnings that were triggered by the last
SQL command.

mysqli_result Classes
mysqli_result — Important Methods

$result->close(); Releases memory occupied by an object.

$result->data_seek(n); Makes record n the active record (n=0 for the first record). This
does not work if query was executed with the optional
parameter MYSQLI_USE_RESULT.

$row = $result->fetch_array(); Returns the next record of the result (or FALSE). Access to
individual fields takes place via $row[n] or $row[‘fieldname’],
where case sensitivity is in force.

$row = $result->fetch_assoc(); Like fetch_array, except that access to fields can take place only
in the form $row[‘fieldname’].

$meta = $result->fetch_fields(); Returns an array of objects that contain metadata on the
columns. For example, $meta[$n]->name gives the name of
a column.

$row = $result->fetch_row(); Like fetch_array, except that field access can take place only in
the form $row[n].

$row = $result->fetch_object(); Returns the next record of the result (or FALSE). Access to
individual fields is via $row->fieldname, where case sensitivity
is in force.

mysqli_result — Important Properties

$n = $result->affected_rows; Returns the number of records that were most recently changed
with INSERT, DELETE, or UPDATE.

$n = $result->field_count; Returns the number of columns of the SELECT result.

$lenarray = $result->lengths; Returns an array whose elements contain the number of characters
of all columns of the record most recently read with fetch_xxx.

$n = $result->num_rows; Returns the number of records in a SELECT result.

mysqli_stmt Class

mysqli_stmt — Important Methods

$stmt->bind_param(‘idsb...’, $var1, $var2 ...); Binds the parameters of an SQL command with the
associated variables. For each variable the data type
must be specified with a character: i = integer,
d = double, s = string, b = binary (BLOB).

$stmt->bind_result($var1, $var2 ...); Binds the columns of a SELECT result and the asso-
ciated PHP variables. The method must be executed
after execute.

$stmt->close(); Releases an object’s memory.

$stmt->execute(); Executes an SQL command, where the parameters
are passed via $var1, $var2, etc.

$stmt->fetch(); Transfers the next record of a SELECT result into the
variables previously specified with bind_result. fetch
returns FALSE if all records have been processed.
fetch normally transfers each record individually
from the server to the client, unless store_result was
executed first.

$stmt->store_result(); Transfers all SELECT results to the client.

mysqli_stmt — Important Properties

$n = $stmt->affected_rows; Returns the number of records that were changed by INSERT,
DELETE, or UPDATE.

$n = $stmt->num_rows; Returns the number of records in a SELECT result; this property can
be used only if store_result was previously executed.

Perl DBI
This reference does not contain an exhaustive list of all DBI methods, functions, and attributes. We
have included only those key words that are most relevant for everyday MySQL programming with
Perl. A complete reference can be found in the perldoc documentation.

In this book we generally place Perl methods in parentheses to improve readability. However,
Perl syntax allows the execution of methods without parentheses, as in $dbh->disconnect.

The following lines show the principles for building a Perl script file:

#!/usr/bin/perl -w
use DBI; # database access
use CGI qw(:standard); # required only with CGI scripts
use CGI::Carp qw(fatalsToBrowser); # only with CGI scripts
... # here follows the actual code

Common Variable Names
The Perl DBI module is object-oriented. Thus the key words introduced in this section relate in part
to methods that can be applied to specific objects (which in Perl are generally called handles). In
this reference the following variable names will be used for such objects:

Common Variable Names for DBI Handles

$dbh (database handle) Represents the connection to the database.

$sth (statement handle) Enables evaluation of query results (with SELECT queries).

$h (handle) General handles, used in this section with methods that are
available to $dbh, $sth, and DBI.

$drh (driver handle) Enables access to many administrative functions.

Establishing the Connection
The Connection

use DBI(); Activates the DBI module.

$datasource = “DBI:mysql:dbname;” . Specifies database names and computer names; the
“host=hostname”; database name may be omitted, but then at least the

colon must be given.

$dbh = DBI->connect($datasource, Creates the connection to the database.
$username, $password [, %attributes]);

Within the datasource character string, further parameters—separated by semicolons—may be
given. Details on these parameters can be found in Chapter 22.

Optional Parameters in the datasource Character String

host=hostname Specifies the name of the computer with the MySQL
server (default localhost).

port=n Specifies the IP port (default 3306).

mysql_compression=0/1 Compresses communication (default 0).

mysql_read_default_file=filename Specifies the file name of the MySQL configuration file.

mysql_read_default_group=mygroup Reads the group [mygroup] within the configuration
(default group [client]).

A list with attributes can be passed as an optional fourth parameter of connect. You can supply
these attributes either directly or in the form of an array variable:

$dbh = DBI->connect($source, $user, $pw, {Attr1=>val1, Attr2=>val2});
%attr = (Attr1=>val1, Attr2=>val2);
$dbh = DBI->connect($source, $user, $pw, \%attr);

To a great extent, these attributes can be read and changed with $dbh after the connection has
been established:

$dbh->{'LongReadLen'} = 1000000;

The following table describes the most important connect attributes.

Optional connect Attributes ($dbh Attributes)

RaiseError=>0/1 Displays an error message and ends the program if the connection is not
properly established (default 0)

PrintError=>0/1 Displays an error message but continues execution if the connection is not
properly established (default 1)

LongReadLen=>n Determines the maximum size of an individual data field in bytes (0: do not
even read long fields)

LongTruncOK=>0/1 Specifies whether data fields that are too long should be truncated (1) or
whether an error should be triggered (0)

Terminate the Connection

$dbh->disconnect(); Terminates connection to the database.

Executing SQL Commands, Evaluating SELECT Queries
Execute Queries Without Return of Data Records

$n = $dbh->do(“INSERT ...”); Executes an SQL query without returning records; $n
contains the number of records that were changed, 0E0
if no records were changed, -1 if the number is unknown,
or undef if an error has occurred.

$n = $dbh->do($sql, \%attr, @values); Executes a parameterized query; @values contains values
for the wild card expressed in the SQL command by ?;
these values are handled automatically with quote(); %attr
can contain optional attributes (otherwise, specify undef).

$id = $dbh->{‘mysql_insertid’}; Returns the AUTO_INCREMENT value of the last record to
be inserted (caution: the attribute mysql_insertid is
MySQL-specific).

Execute Queries with Return of Data Records

$sth = $dbh->prepare(“SELECT …”); Prepares an SQL query (generally SELECT queries); all
further operations proceed with the help of the statement
handle.

$sth->execute(); Executes the query.

$sth->execute(@values); Executes a parameterized query; @values contains values
for the wild card expressed in the SQL command by ?.

$sth->fetchxxx(); Evaluates the results (see below).

$sth->finish(); Releases the resources of the statement handle.

If a query was executed with prepare and execute and a list of records was returned as result,
then this list can be evaluated with a number of fetch methods.

Evaluating Lists of Data Records

@row = $sth->fetchrow_array(); Reads the next record into the array @row; if the end of the
list is reached or if an error occurs, then @row contains an
empty array; access to individual elements proceeds with
$row[n] (where for the first column, n=0).

@row = $sth->fetch(); Equivalent to fetchrow_array().

$rowptr = $sth->fetchrow_arrayref(); Equivalent to fetchrow_array(), but returns pointers to
arrays (or undef if the end of the list of records is reached
or an error occurs).

$row = $sth->fetchrow_hashref(); Reads the next record into the associated array $row; if the
end of the list of records is reached or if an error occurs,
then $row contains the value undef; access to individual
elements proceeds with $row->{‘columnname’}, where case
sensitivity is enforced.

$result = $sth->fetchall_arrayref(); Reads all records and returns a pointer to an array of
pointers to the individual records; access to individual
elements proceeds with $result->[$row][$col].

$result = $sth->fetchall_arrayref({}); As above, but the records are now associative arrays; access
is via $result->[$row]->{‘columnname’}.

Bind Variables to Columns (for fetchrow_array)

$sth->bind_col($n, \$var); Binds the column n to the variable $var (where for the
first column we have, exceptionally, n=1); the variable
is automatically updated when the next record is read;
bind_col must be executed after execute; the function
returns false if an error occurs.

$sth->bind_columns(\$var1, \$var2, ...); Equivalent to bind_col, except that variables are
assigned to all columns of the query; make sure you
have the correct number of variables.

Metainformation on SQL Commands

$n = $sth->{‘NUM_OF_FIELDS’}; Returns the number of result columns (after SELECT).

$n = $sth->{‘NUM_OF_PARAMS’}; Returns the number of parameters in queries with wild cards.

$sql = $sth->{‘Statement’}; Returns the underlying SQL command.

Determine Column Names, Data Types, etc., of SELECT Results

$array_ref = $sth->{‘NAME’}; Returns a pointer to an array with the names of all columns
evaluation takes place with @{$array_ref}[$n], where n ranges
from 0 to $sth->{‘NUM_OF_FIELDS’}-1.

$array_ref = $sth->{‘NAME_lc’}; As above, but names in lowercase.

$array_ref = $sth->{‘NAME_uc’}; As above, but names in uppercase.

$array_ref = $sth->{‘NULLABLE’}; Specifies for each column whether NULL may be stored there
(1) or not (0); if this information cannot be determined, then
the array contains the value 2 for this column.

$array_ref = $sth->{‘PRECISION’}; Specifies the precision in the sense of ODBC (the maximum
column width).

Determine Column Names, Data Types, etc., of SELECT Results (Continued)

$array_ref = $sth->{‘SCALE’}; Specifies the number of decimal places for floating-point
numbers.

$array_ref = $sth->{‘TYPE’}; Specifies the data type of all columns in the form of numerical
values; the values relate to the ODBC standard; tests deter-
mined the following values: CHAR: 12, INT: 4, TEXT/BLOB: -1,
DATE: 9, TIME: 10, TIMESTAMP: 11, FLOAT: 7, DECIMAL: 3,
ENUM/SET: 1.

Shorthand Notation

@row = $dbh->selectrow_array($sql); Corresponds to a combination of prepare, execute, and
fetchrow_array; the result is an array of the first result
data record; access to further records is not possible.

$result = $dbh->selectrow_array($sql); As above, but $result contains the value of the first
column of the first result record.

$result = $dbh->selectall_arrayref($sql); Corresponds to prepare, execute, and fetchall_arrayref;
for evaluation of $result, see fetchall_arrayref.

Marking Special Characters in Character Strings and BLOBs with the Backslash

$dbh->quote($data); Prefixes the contents of $data between single quotes, prefixes \ and ‘ with
\, and replaces 0-bytes with \0; if $data is empty (undef), then quote()
returns the character string NULL.

Transactions

$dbh->{‘AutoCommit’} = 0; Deactivates autocommit mode. From now on, all SQL commands
form transactions.

$dbh->commit(); Confirms a transaction.

$dbh->rollback(); Aborts a transaction.

Error Handling
Methods for Error Handling

$h->err(); Returns the error number of the last error (0: no error).

$h->errstr(); Describes the last error (empty string: no error).

DBI->trace($n [, $filename]); Logs all internal data accesses and redirects output to STDERR
or the given file; n specifies the degree of detail to be logged
(0 deactivates logging, 1 gives a good idea, 15 logs everything).

Auxiliary Functions

DBI Functions

@bool = DBI::looks_like_a_number(@data); Tests for each element in the array @data
whether it is a number and returns true or
undef in the result array.

$result = DBI::neat($data [, $maxlen]); Formats the character string contained in
$data in a form suitable for output; character
strings are placed in single quotes; non-ASCII
characters are replaced by a period; if the char-
acter string is longer than $maxlen characters
(default 400), then it is truncated and termi-
nated with … .

$result = DBI::neat_list(\@listref, $maxlen, $sep); As above, but for an entire array of data; the
individual elements are separated by $sep
(default “,”).

$dbh Methods

$ok = $dbh->ping(); Tests whether the connection to MySQL still exists and returns true or false
accordingly.

MySQL-Specific Extension of the DBD::mysql Driver
If you use the DBI module for access to MySQL databases, then there are some supplementary
functions available via DBI methods and attributes, of which we shall now describe some of the
most important. The use of these functions can simplify programming and can make Perl programs
more efficient. However, the code will no longer be portable; that is, a later change to another data-
base system will require additional work.

Administrative Functions Based on a Separated Connection

$drh = DBI->install_driver(‘mysql’); Returns a driver handle.

$drh->func(‘createdb’, $database, $host, Creates a new database; a new connection is used for
$user, $password, ‘admin’); this.

$drh->func(‘dropdb’, $database, $host, Deletes a database.
$user, $password, ‘admin’);

$drh->func(‘shutdown’, $host, $user, Shuts down the MySQL server.
$password, ‘admin’);

$drh->func(‘reload’, $host, $user, Reinputs all MySQL tables (including the mysql tables
$password, ‘admin’); with privilege management).

Administrative Functions Within the Current Connection

$dbh->func(‘createdb’, $database, ‘admin’); Creates a new database.

$dbh->func(‘dropdb’, $database, ‘admin’); Deletes a database.

$dbh->func(‘shutdown’, ‘admin’); Shuts down the MySQL server.

$dbh->func(‘reload’, ‘admin’); Reinputs all MySQL tables.

$dbh Attributes

$info = $dbh->{‘mysql_hostinfo’}; Returns a string with the connection data for the MySQL
server (e.g., 192.168.80.128 via TCP/IP).

$info = $dbh->{‘mysql_info’}; After certain special SQL commands returns a character
string with information about the command (e.g., after
an UPDATE command: Rows matched: 13 Changed: 13
Warnings: 0).

$id = $dbh->{‘mysql_insertid’}; Returns the AUTO_INCREMENT value of the last
inserted record.

$n = $dbh->{‘mysql_protoinfo’}; Returns the version number of the MySQL connection
protocol (e.g., 10).

$info = $dbh->{‘mysql_serverinfo’}; Returns a string with the version number of the MySQL
server (e.g., 5.0.2-alpha-standard).

$info = $dbh->{‘mysql_stat’}; Returns a string with the server status (number of
threads, open tables, etc.).

$threadid = $dhb->{‘mysql_thread_id’}; Returns the thread ID number of the current connection
to MySQL.

$sth Methods and Attributes

$sth->rows(); Returns after SELECT queries the number of data records found by
SELECT; caution: this does not work if $sth->{‘mysql_use_result’}=1
holds.

$sth->{‘mysql_store_result’}=1; Activates mysql_store_result, so that with SELECT queries all
results are stored temporarily on the client computer (default
setting).

$sth->{‘mysql_use_result’}=1; Activates mysql_use_result, so that with SELECT queries only
a single record is stored temporarily on the client.

$sth Attributes for Determining Metadata on SELECT Results

$ar_ref = $sth->{‘mysql_is_auto_increment’}; Tells whether for the columns the AUTO_
INCREMENT attribute holds. This and all additional
attributes return a pointer to an array whose values
give the status. Evaluation is with @{$ar_ref}[$n],
where n ranges from 0 to $sth->{‘NUM_OF_FIELDS’}-1.

$ar_ref = $sth->{‘mysql_is_blob’}; Tells whether the columns contain BLOBs.

$ar_ref = $sth->{‘mysql_is_key’}; Specifies whether the columns are indexed.

$ar_ref = $sth->{‘mysql_is_not_null’}; Specifies whether the attribute NOT NULL holds for
the columns.

$ar_ref = $sth->{‘mysql_is_num’}; Specifies whether numerical data are stored in the
columns.

$ar_ref = $sth->{‘mysql_is_pri_key’}; Specifies which columns are part of the primary
index.

$ar_ref = $sth->{‘mysql_max_length’}; Specifies the maximum column width of the query
results.

$ar_ref = $sth->{‘mysql_table’}; Specifies the underlying table names for all columns.

$ar_ref = $sth->{‘mysql_type_name’}; Specifies the names of the data types for all columns.

JDBC (Connector/J)
In order to be able to access MySQL under Java, a JDBC driver for MySQL must be installed. This
book assumes that you are using Connector/J version 3.n. If this assumption is satisfied, you can use
numerous classes and methods of JDBC (Java Database Connectivity) with the names java.sql.* and
javax.sql.*. The following tables assemble only the most important classes and methods of JDBC.
There is simply no room for a complete reference to this complex database programming library.

Establishing a Connection

Connection with DriverManager

import java.sql.*; Enables direct access to the JDBC
base classes.

Class.forName(“com.mysql.jdbc.Driver”).newInstance(); Loads and registers Connector/J, the
MySQL driver for JDBC.

Connection conn = DriverManager.getConnection
(“jdbc:mysql://hostname/dbname”, “username”, “password”); Creates a connection to the database

dbname on the computer hostname;
in the connection string, a large num-
ber of additional optional parameters
may be passed, the most important
of which appear in two tables in
Chapter 17.

Connection with DataSource (Since Java 2, Version 1.4)

import java.sql.*; Enables direct access to the JDBC base and extension
import javax.sql.*; classes.

com.mysql.jdbc.jdbc2.optional. Creates an object of the class com.mysql.jdbc.jdbc2.
MysqlDataSource ds = optional.MysqlDataSource, sets the host and database
new com.mysql.jdbc.jdbc2.optional. names, and finally establishes the connection.
MysqlDataSource();

ds.setServerName(“hostname”);
ds.setDatabaseName(“dbname”);
Connection conn =
ds.getConnection(
“username”, “password”);

ds.setUrl(“...”); To be used instead of setServerName and
setDatabaseName for setting various connection
parameters; the syntax of the connection string (URL)
is the same as for DriverManager.getConnection.

Executing SQL Commands

SQL Commands (Statement)

Statement stmt = Creates a Statement object, necessary to execute an SQL
conn.createStatement(); command.

Statement stmt = Defines a Statement object for forward only ResultSets.
conn.createStatement(
java.sql.ResultSet.
TYPE_FORWARD_ONLY,

java.sql.ResultSet.
CONCUR_READ_ONLY);

stmt.setFetchSize(
Integer.MIN_VALUE);

Statement stmt = Defines a Statement object for a variable ResultSet.
conn.createStatement(
java.sql.ResultSet.
TYPE_SCROLL_SENSITIVE,

java.sql.ResultSet.
CONCUR_UPDATABLE);

int n = stmt.executeUpdate(Executes INSERT, UPDATE, and DELETE commands.
“INSERT ...”); The return value gives the number of changed records.

stmt.getWarnings(); With getWarnings you can determine the warnings issued
when the command was executed (equivalent to SHOW
WARNINGS). This method returns an SQLWarning object
until all warnings have been processed.

ResultSet res = stmt.executeQuery(Executes a SELECT query and returns as result a
“SELECT ...”); ResultSet object.

stmt.addBatch(“INSERT ...”); Collects a number of SQL commands and executes them
stmt.addBatch(“INSERT ...”); as a group; executeBatch returns an int field that specifies
int[] n = stm.executeBatch(); the number of changed records.

Determining AUTO_INCREMENT IDs After INSERT Commands

stmt.executeUpdate(“INSERT ...”); The starting point for the following three variants.

ResultSet newid = getGeneratedKeys returns a ResultSet object with the most
stmt.getGeneratedKeys(); recently generated ID number(s); normally, that is, after

if(newid.next()) { a usual INSERT command, res contains exactly one ID num-
int id = newid.getInt(1); } ber that is read with next() and getInt(1); getGeneratedKeys is

available since Java 2, version 1.4.

long id = ((com.mysql.jdbc. getLastInsertID also returns the ID number; however, the
Statement)stmt).getLastInsertID(); method is Connector/J-specific and not portable.

ResultSet newid = Here the ID number is returned with a separate SQL com-
stmt.executeQuery(mand; note that the command is executed in the same
“SELECT LAST_INSERT_ID()”); transaction.

if(newid.next()) {
id = newid.getInt(1); }

Executing PreparedStatments

PreparedStatement pstmt = Declares an SQL command with two parameters indicated
conn.prepareStatement(by question marks.
“INSERT ... (?, ?)”);

pstmt.setString(1, “O’Reilly”); Passes the parameter; there are numerous methods in
pstmt.setInt(2, 7878); addition to setString and setInt, e.g., setNull, setDate,

setTime, setFloat, setBinaryStream; to these methods are
passed the parameter number (beginning with 1) and the
actual data.

int n = pstmt.executeUpdate(); Executes the command(s); the methods have the same
ResultSet res = pstmt.executeQuery(); meaning as for the Statement class.
pstmt.addBatch();
int n pstmt.executeBatch();

Processing SELECT Results (ResultSet Class)

Changing ResultSets

res.deleteRow(); Deletes the active record.

res.updateXxx(n, data); First changes the specified columns of the active record and then stores
res.updateRow(); the changes.

res.moveToInsertRow(); Inserts a new record, changes its columns, and then stores the changes.
res.updateXxx(n, data);
res.insertRow();

Evaluating ResultSet

res.getInt(n); Returns the data field of column n of the currently active record;
res.getString(n); instead of the column number (1 for the first column), the name of
res.getBytes(n); the column may be specified, e.g., getDate(“birthdate”).
...

res.wasNull(); Tests whether the most recently read data field was NULL; this test is
necessary with elementary Java data types that cannot store the value
NULL and instead contain 0; wasNull offers the only way of distin-
guishing between 0 and NULL.

res.getBinaryStream(n); Returns an InputStream object for bytewise reading of binary data.

res.getCharacterStream(n); Returns a Reader object for characterwise reading of binary data.

res.getBlob(n); Returns a Blob object for reading binary data.

res.getClob(n); Returns a Clob object for reading binary data.

ResultSet Navigation

res.next(); Makes the next record in ResultSet the active record; the method returns
false if there are no more records.

res.first(); Activates the first record; the method returns false if the ResultSet contains
no records.

res.previous(); Activates the previous record.

res.last(); Activates the last record.

res.beforeFirst(); Places the record cursor before the first record; the ResultSet object is
thereby in the same condition as immediately after executeQuery; now
the first record can be activated with next.

res.afterLast(); Places the record cursor after the last record; previous activates the last
record.

res.isFirst(); Tests whether the current record is the first/last.
res.isLast();

int n = res.getRow(); Returns the number of the active record (1 for the first record).

res.absolute(n); Activates record n.

Metadata on ResultSet

ResultSetMetaData meta = res.getMetaData(); Returns a ResultSetMetaData object that gives
information about the SELECT result.

meta.getColumnCount(); Returns the number of columns.

meta.getColumnName(i); Returns the name (String) of column i.

meta.getColumnType(i); Returns the data type of column i; the result is an
int with one of the constants from java.sql.Types.

meta.getColumnTypeName(i); Returns the name (String) of the data type of
column i.

meta.IsNullable(i); Tells whether the column may contain NULL.

meta.IsAutoIncrement(i); Tells whether it is an AUTO_INCREMENT column.

Transactions
Transactions

conn.setAutoCommit(false); Enables transactions (of course only if the MySQL tables are
transaction-capable).

conn.commit(); Confirms all SQL commands executed in the current transaction
and begins the next transaction.

conn.rollback(); Aborts the commands of the current transaction and begins a
new one.

ADO.NET (Connector/Net)
The following tables summarize the most important classes and methods provided by Connector/J
(that is, the library MySql.Data.dll). Visual Basic syntax is used.

Establishing a Connection, Connection Properties

Creating the Connection

Imports MySql.Data.MySqlClient Enables convenient access to the Connector/Net classes.

Dim myconn As MySqlConnection Creates a connection to the MySQL server.
myconn = New MySqlConnection(_
“Data Source=localhost;

Initial Catalog=mylibrary;
User ID=root;PWD=xxxxxx”)

myconn.Open()

Methods and Properties of the MySqlConnection Class

BeginTransaction Begins a transaction and returns a MySqlTransaction object (see below).

Close Ends the connection.

ConnectionString Contains the connection properties as a character string.

CreateCommand Creates a MySqlCommand object.

Dispose Releases memory used by the connection.

Ping Tests whether the connection is active.

ServerThread Contains the MySQL server thread number for the connection.

ServerVersion Contains the MySQL version number as a string (e.g.,
5.0.2-alpha-standard-log).

State Provides information about the state of the connection (data type
System.Data.ConnectionState).

Executing and Evaluating SQL Commands

Executing SQL Commands (MySqlCommand Class)

Dim com As MySqlCommand Creates a MySqlCommand object in two different ways.
com = myconn.CreateCommand(“sql”)
com = New MySqlCommand(“sql”, _
myconn)

com.ExecuteNonQuery() Executes an SQL command that returns no result (e.g.,
UPDATE or INSERT).

obj = com.ExecuteScalar() Returns a single result (a scalar). ExecuteScalar is suitable
only for SELECT queries that return exactly one row and
one column. The return value of ExecuteScalar has the
data type Object and must be transformed with a
conversion function (e.g., CInt) or a cast operator (e.g.,
(int)) into the desired data format.

dr = com.ExecuteReader() Returns a MySqlDataReader object (see below).

Dim n As Long Returns the ID number (AUTO_INCREMENT column)
com.CommandText = of the last record inserted with INSERT.
“SELECT LAST_INSERT_ID()”

n = CLng(com.ExecuteScalar())

Executing SQL Commands with Parameters (MySqlParameter Class)

Dim com As MySqlCommand Prepares an SQL command with parameters. Each
Dim p1, p2, p3 As MySqlParameter parameter is specified in the form ?name. Then an
com = myconn.CreateCommand() associated MySqlParameter object must be created in
com.CommandText = _ which the desired data type of the parameter is specified.
“INSERT ... VALUES(?a, ?b, ?c)” Prepare prepares the command for later execution.

p1 = com.Parameters.Add(“?a”, _
MySqlDbType.VarChar)

p2 = com.Parameters.Add(“?b”, _
MySqlDbType.Int32)

...
com.Prepare()

p1.Value = ... Assigns values to the Value properties of the
p2.Value = ... MySqlParameter object and then executes the command
com.ExecuteXxx() with the method Execute described above.

Evaluating SELECT Results (MySqlDataReader Class)

Dim dr As MySqlDataReader Executes a SELECT command and returns the result as a
dr = com.ExecuteReader() MySqlDataReader object. Access to the SELECT results takes

place under forward-only and read-only.

dr.HasRows Tests whether the DataReader contains any data.

dr.FieldCount Returns the number of columns of the DataReader.

While dr.Read() Outputs the DataReader row by row. Read returns False if there
n = CInt(dr!publID) are no more records. Access to the columns of the current record
s = CStr(dr!publName) takes place in VB.NET in the form dr!columnname, and in C# in

End While the form dr[“columnname”]. The return values have the data type
Object and must be transformed into the actual data format using
Cdatatype functions (VB.NET) or (datatype) cast operators.

dr.GetName(n) Returns the name of column n (0 for the first column).

dr.GetDataTypeName(n) Returns the name of the column’s data type.

dr.IsDBNull(n) Tests whether column n of the current record contains NULL.

dr.GetByte(n) Reads the data of column n directly. These methods are suitable
dr.GetBytes(n, ...) in particular for processing binary data.
dr.GetChar(n)
dr.GetDateTime(n)
...

bool = dr.NextResult() Activates the next SELECT result. The method returns False if
there are no further results.

dr.Close() Closes the DataReader and releases the data.

Altering Data in DataSet/DataTable

Application of MySqlDataAdapter and MySqlCommandBuilder

Dim da As New _ Creates a DataTable on the basis of the SQL command com
MySqlDataAdapter(com) (MySqlCommand) and makes it available under the name

Dim ds As New DataSet() dtname in a DataSet.
da.Fill(ds, “dtname”)
Dim dt As DataTable = _
ds.Tables(“dtname”)

n = dt.Count Determines the number of records in the DataTable.

Dim row As DataRow Creates a loop over all records of a DataTable. In C# column
For Each row In dt.Rows access is in the form dt[“columnname”].
var = row!columnname

Next

row.Delete() Deletes the current record in DataSet.

row!columname = ... Changes the current record in DataSet.
row.Update()

Dim newrow As DataRow Creates a new record and stores it in DataSet.
newrow = dt.NewRow()
newrow!columnname = ...
dt.Rows.Add(newrow)

Dim cb As New _ Stores the changes made locally in the DataSet permanently on
MySqlCommandBuilder(da) the MySQL server. The MySqlCommandBuilder object provides

da.Update(ds, “dtname”) the necessary SQL change commands.

cb.GetDeleteCommand() Returns the DELETE, INSERT, or UPDATE commands created
cb.GetInsertCommand() by MySqlCommandBuilder as MySqlCommand objects. (The
cb.GetUpdateCommand() actual SQL code can be read from the property CommandText.)

Transactions

Transactions

Dim tr As MySqlTransaction Creates a MySqlTransaction object.
tr = myconn.BeginTransaction()

Dim com As New MySqlCommand(_ Creates a MySqlCommand object and executes it in
“UPDATE ...”, myconn, tr) the framework of this transaction.

com.ExecuteNonQuery()
... further commands of the transaction

tr.Commit() Confirms the transaction.

tr.Rollback() Aborts the transaction.

C API
The following tables assemble the most important functions and structures of the C API.

Data Structures

Data Structures

MYSQL *conn; Structure with connection data.

MYSQL_RES *result; Structure with the results of a SELECT query.

MYSQL_ROW row; Pointer to the results of a row (i.e., of a data record).

MYSQL_ROW_OFFSET roffset; Pointer to a record within the result list.

MYSQL_FIELD *field; Structure for describing a column (column name, data type,
number of digits, etc.); details in the next table.

MYSQL_FIELD_OFFSET foffset; Offset within a record (0 for the first column, 1 for the second, etc.).

MYSQL_STMT *stmt; Structure for processing prepared statements.

MYSQL_BIND bind[n]; Structure for describing the parameters of prepared statements.

MYSQL_TIME mytime; Structure for passing date and time values in prepared
statements.

my_ulonglong n; 64-bit integer; some of the MySQL functions described below
return results of this data type.

In the further syntax tables, the variables conn, result, row, field, roffset, foffset, etc., will be used
as if they had been declared in the above table. Note that MYSQL_ROW is already a pointer and is
therefore declared without *.

Elements of the MYSQL_FIELD Structure

char *name; Name of the column.

char *table; Name of the table from which the column comes; if the column
was computed or an ALIAS was used, then table points to a char-
acter string with the formula or the ALIAS name.

char *def; Default value of the column or NULL.

enum enum_field_types type; Data type of the column; these are the choices:
FIELD_TYPE_BLOB,
FIELD_TYPE_DATE,
FIELD_TYPE_DATETIME,
FIELD_TYPE_DECIMAL,
FIELD_TYPE_DOUBLE,
FIELD_TYPE_ENUM,
FIELD_TYPE_FLOAT,
FIELD_TYPE_INT24,
FIELD_TYPE_LONG,
FIELD_TYPE_LONGLONG,
FIELD_TYPE_NULL,
FIELD_TYPE_SET,
FIELD_TYPE_SHORT,
FIELD_TYPE_STRING,
FIELD_TYPE_TIME,
FIELD_TYPE_TIMESTAMP,
FIELD_TYPE_TINY,
FIELD_TYPE_VAR_STRING,
FIELD_TYPE_YEAR.

Continued

Elements of the MYSQL_FIELD Structure (Continued)

unsigned int length; Length of the column according to the column definition.

unsigned int max_length; Maximal length of a column within the query result; the value is
always 0 if you use mysql_use_result().

unsigned int flags; Additional information for describing the column:
AUTO_INCREMENT_FLAG,
BINARY_FLAG,
MULTIPLE_KEY_FLAG,
NOT_NULL_FLAG,
PRI_KEY_FLAG,
UNIQUE_KEY_FLAG,
UNSIGNED_FLAG,
ZEROFILL_FLAG.

unsigned int decimals; Number of places after the decimal point in DECIMAL columns
(e.g., 5 for DECIMAL(10,5)).

Data Structures for Prepared Statements

Elements of the MYSQL_BIND Structure

enum enum_field_types buffer_type; Data type of the parameter; possible values are collected in
the following table.

void *buffer; Pointer to the buffer variable in which the data are passed.

unsigned long buffer_length; Maximal buffer size (for strings/BLOBs).

unsigned long *length; Actual length of the data passed (for strings/BLOBs).

my_bool *is_null; Specifies whether NULL should be passed; in this case the
contents of the buffer variable are not evaluated. Caution:
is_null cannot be directly read; it is a pointer to the variable
that contains the relevant information.

my_bool is_unsigned; For integer data types specifies whether the value is to be
interpreted as unsigned.

my_bool error; Specifies whether an error has occurred in data transport
(e.g., exceeding the maximum buffer size).

The following table summarizes the allowable settings for buffer_type in a MYSQL_BIND struc-
ture. The second column gives the matching MySQL data type and the best-fitting C data type.

enum_field_types (Settings)

MYSQL_TYPE_TINY For MySQL TINYINT values (C-Typ char).

MYSQL_TYPE_SHORT For SMALLINT values (short int).

MYSQL_TYPE_LONG For INT values (int).

MYSQL_TYPE_LONGLONG For BIGINT values (long long int).

MYSQL_TYPE_FLOAT For FLOAT values (float).

MYSQL_TYPE_DOUBLE For DOUBLE values (double).

MYSQL_TYPE_TIME For TIME values (MYSQL_TIME).

MYSQL_TYPE_DATE For DATE values (MYSQL_TIME).

MYSQL_TYPE_DATETIME For DATETIME values (MYSQL_TIME).

enum_field_types (Settings) (Continued)

MYSQL_TYPE_TIMESTAMP For TIMESTAMP values (MYSQL_TIME).

MYSQL_TYPE_STRING For CHAR strings (char *).

MYSQL_TYPE_VAR_STRING For VARCHAR strings (char *).

MYSQL_TYPE_TINY_BLOB For TINY_BLOBs (char *).

MYSQL_TYPE_BLOB For BLOBs (char *).

MYSQL_TYPE_MEDIUM_BLOB For MEDIUM_BLOBs (char *).

MYSQL_TYPE_LONG_BLOB For LONG_BLOBs (char *).

Elements of the MYSQL_TIME Structure

unsigned int year; Year.

unsigned int month; Months.

unsigned int day; Days.

unsigned int hour; Hours.

unsigned int minute; Minutes.

unsigned int second; Seconds.

my_bool neg; Boolean value that tells whether a negative value is involved (such
as with a result of the function TIME_DIFF).

unsigned long second_part; Microseconds; not used in MySQL 5.0.

Connection and Administration

Establishing a Connection

MYSQL *conn;
conn = mysql_init(NULL); Initializes the MYSQL data structure.

mysql_options(conn, option, “value”); Sets additional options for the connection; an option
with one of the following values is passed:
MYSQL_OPT_CONNECT_TIMEOUT,
MYSQL_OPT_LOCAL_INFILE,
MYSQL_OPT_NAMED_PIPE,
MYSQL_INIT_COMMAND,
MYSQL_READ_DEFAULT_FILE,
MYSQL_READ_DEFAULT_GROUP.
Many additional options are documented at
http://dev.mysql.com/doc/mysql/en/mysql_options.html.
With some options, “value” can be used to specify the
desired value; for setting several options, the function
must be called repeatedly; mysql_options must be
exectued before mysql_real_connect.

Continued

Establishing a Connection (Continued)

mysql_real_connect(conn, “hostname”, Makes a connection to the database and returns NULL
“username”, “password”, “dbname”, in case of error; flags can contain a combination of the
portnum, “socketname”, flags); following values:

CLIENT_COMPRESS,
CLIENT_FOUND_ROWS,
CLIENT_IGNORE_SPACE,
CLIENT_INTERACTIVE,
CLIENT_LOCAL_FILES,
CLIENT_MULTI_STATEMENTS,
CLIENT_MULTI_RESULTS,
CLIENT_NO_SCHEMA,
CLIENT_ODBC,
CLIENT_SSL.

mysql_set_server_option(conn, option); Changes server options for a long-term connection.
Currently, only two values are accepted for server
options:
MYSQL_OPTION_MULTI_STATEMENTS_ON,
MYSQL_OPTION_MULTI_STATEMENTS_OFF.

mysql_change_user(conn, “username”,
“password”, “dbname”); Changes the user and the default database for an

existing connection.

mysql_change_db(conn, “dbname”); Changes the default database; the function assumes that
the user has access to the database.

mysql_ping(conn); Tests whether the connection still exists; if not, the
connection is recreated; returns 0 as result if an active
connection exists.

mysql_close(conn); Closes the connection.

Acquiring Information on the Current Connection

mysql_characterset_name(conn); Returns a character string with the default character set of the
connection.

mysql_get_client_info(); Returns a character string with information on the version of
the client library in use (e.g., “5.0.2”).

mysql_get_server_info(conn); Returns a string with the version of the server (e.g.,
“5.0.2-alpha-standard”).

mysql_get_host_info(conn); Returns a string with information on the connection to the
server (e.g., “localhost via UNIX socket”).

mysql_get_proto_info(conn); Returns the version number (unsigned int) of the connection
protocol, e.g., 10.

mysql_info(conn); Returns a string with information on the execution of the last
INSERT, UPDATE, LOAD DATA, or ALTER TABLE command
(e.g., “Rows matched: 3 Changed: 3 Warnings: 0”).

mysql_stat(conn); Returns a string with the server status (number of threads,
number of open tables, etc.).

mysql_thread_id(conn); Returns the number (unsigned long) of the thread that the
current connection is processing on the server.

Adminstrative Functions

mysql_kill(conn, n); Ends the thread specified by n (requires the Process privilege).

mysql_shutdown(conn); Shuts down the server (execution requires the Shutdown privilege).

Error-Handling

mysql_errno(conn); Returns the error number (unsigned int) for the most recently
executed command (or 0 if there was no error).

mysql_error(conn); Returns a string with the error message (or an empty string “”
if there was no error).

mysql_warning_count(conn); Returns the number of warnings that the last command returned.
To read the actual warnings, you must execute the command
SHOW WARNINGS.

Executing and Evaluating SQL Commands

Execution of SQL Commands

mysql_query(conn, “SELECT …”); Executes the specified command and returns 0 if the
server accepts the command without triggering an
error.

mysql_real_query(conn, “SELECT … “, len); Like mysql_query, except that the SQL command
may now contain the 0-byte (e.g., to store BLOBs);
for this, the length of the string must be specified
explicitly.

mysql_affected_rows(conn); Returns the number (data type my_ulonglong) of
changed records after a DELETE, INSERT, or UPDATE
command; the function does not return the number
of results of a SELECT command.

mysql_insert_id(conn); Returns the AUTO_INCREMENT value (data type
my_ulonglong) of the last record created via INSERT.

Processing SELECT Results

result = mysql_store_result(conn); Transfers all results from the server to the client and stores
them in the MYSQL_RES structure.

result = mysql_use_result(conn); Represents an alternative to mysql_store_result; the transfer
of individual records is only prepared; no data are actually
transferred.

mysql_num_fields(result); Returns the number of columns of the result.

row = mysql_fetch_row(result); Transfers the next record to a MYSQL_ROW structure; the
function returns NULL if there are no further records avail-
able, i.e., if all records have already been processed.

row[n]; Returns a 0-terminated string with the content of column n of
the current record; note that row[n] can contain NULL; if you
are processing binary data with zero bytes, you must make
the call with mysql_fetch_lengths to determine the size of the
data field.

mysql_free_result(result); Releases the result structure; if you are working with
mysql_use_result, the result is only now released by the server.

Processing SELECT Results: Metainformation on Columns and Fields

mysql_fetch_lengths(result); Returns for the current record an unsigned long field
with the length of the result string in row[n].

field = mysql_fetch_field(result); Returns a description (MYSQL_FIELD structure) of
the data type of a column; the first call returns the data
for the first column, the next for the second column,
etc.; the function returns NULL after all columns have
been run through; the elements of the MYSQL_FIELD
structure were described previously.

field = mysql_fetch_field_direct(result, n); Returns a description of column n (0 for the first
column, etc.).

mysql_fetch_fields(result); Returns a description of all columns as a
MYSQL_FIELD field.

The following functions can be used only if you are using mysql_store_result (and are not work-
ing with mysql_use_result).

Processing SELECT Results: Additional Functions for mysql_store_result

mysql_num_rows(result); Returns the number of found records.

mysql_data_seek(result, n); Moves the row cursor to record n (0 for the first record); then
mysql_fetch_row must be executed to reinput data.

roffset = mysql_row_tell(result); Returns a pointer (a sort of bookmark) to the current record.

mysql_row_seek(result, roffset); Moves the row cursor to a particular location within the result
list; then mysql_fetch_row must be executed to reinput data;
roffset must be determined earlier with mysql_row_tell.

MULTI_STATEMENTS and MULTI_RESULTS Mode

mysql_real_connect(…, CLIENT_MULTI_STATEMENTS); Activates the two MULTI modes at con-
nection time.

mysql_set_server_option(conn, MYSQL_OPTION_
MULTI_-STATEMENTS_ON); Activates the two MULTI modes at a

later time.

mysql_query(“command1; command2; command3”); Executes several commands separated
by semicolons. The result of the first
command can be processed as usual
(mysql_affected_rows,
mysql_store_result, etc.).

n = mysql_more_results(conn); Tests whether there are more results
(n=1).

n = mysql_next_result(conn); Activates the next result. This can then
be processed with the usual functions.
The possible return values are these:
n=0 OK, there are more results,
n=-1 OK, but there are no more results,
n>0 error number.

Auxiliary Functions

n = mysql_real_escape_string Copies the string src into the string dest while replacing the
(conn, dest, src, srclen); special characters with \ character combinations (\0, \b, \t,

\”, \’, etc.); dest is terminated with a 0-byte; srclen specifies
the number of characters in src; dest must be previously
initialized with a string of the appropriate length; to be able
to copy a string full of special characters without error, dest
must offer place for srclen*2+1 characters; the function
returns the number of characters in dest (without the
0-byte). If “O’Reilly” is copied, then afterward, src contains
the string O\’Reilly, and n the value 9.

n = mysql_hex_string(to, from, len); Changes every character of the string from into hexa-
decimal code and writes it to the buffer to. The resulting
string in to ends with a 0-byte. It does not contain the
characters 0x, which in MySQL indicate hexadecimal strings.
You must insert 0x yourself when preparing the SQL
command.
len gives the length of the string in from. The buffer to must
have length len*2+1 characters.
The function returns the length of the resulting string
without the closing 0-byte.

destpt = strmov(dest, src); Like strcpy, copies the string src to the string dest; the differ-
ence is in the return value, which points to the end of the
string in dest; this makes it easy to construct a string from
several pieces; to be able to use strmov, the files my_global.h
and m_string.h must be included before mysql.h.

Prepared Statements

Preparing and Executing Prepared Statements

stmt = mysql_stmt_init(conn); Returns a MYSQL_STMT structure.

mysql_stmt_prepare(stmt, sqlcmd, strlen(sqlcmd)); Initializes the MYSQL_STMT structure; sqlcmd
is the string (char[]) with the SQL command
to be executed.

mysql_stmt_bind_param(stmt, bind); Declares the parameters for the SQL command;
bind is a MYSQL_BIND field, where each field
element describes a parameter.

mysql_stmt_execute(stmt); Executes the SQL command. The parameters
are read from the buffer variables given in bind
and written there as well (SELECT results).

mysql_stmt_close(stmt); Releases the memory for the MYSQL_STMT
structure.

Evaluating SELECT Results of Prepared Statements

stmt = mysql_stmt_init(conn); Returns a MYSQL_STMT structure.

mysql_stmt_prepare(stmt, sqlcmd, strlen(sqlcmd)); Initializes the MYSQL_STMT structure.

mysql_stmt_bind_result(stmt, bind); Declares the result columns of the SELECT
command; bind is a MYSQL_BIND field,
where each field element describes a column.

mysql_stmt_execute(stmt); Executes the SQL command.

mysql_stmt_store_result(stmt); Transfers all results to the client and stores
them in a buffer. Calling this function is
optional. If you do not do so, the records
remain on the server until the last record
is read with mysql_stmt_fetch. Then
mysql_stmt_data_seek is not available, and
mysql_stmt_num_rows is available only after
all records have been processed.

n = mysql_stmt_num_rows(stmt); Returns the number of result records; n has
the data type my_ulonglong.

mysql_stmt_fetch(stmt); Reads the next record into the variables given
by the MYSQL_BIND field. The function
returns 0 if there are no further results.

mysql_stmt_data_seek(stmt, n); Activates record n. The next call to
mysql_stmt_fetch reads this record into the
variables.

result = mysql_stmt_result_metadata(stmt); Returns metainformation on the SELECT
result. Details can then be determined with
mysql_num_fields, mysql_fetch_field, etc.

